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Abstract

We already know that tic-tac-toe is a solved game, meaning it is determined if both
players play their best. This is, however, not so clear for the game of Chess. We will first
start with a good game of tic-tac-toe, then refine the intuition into rigor on our way to
proving the first formal theorem in the theory of games, credited to Ernst Zermelo. In full
generality, we show that in two-player finite games of perfect information, there is always
a strategy to reach a win or draw; with no regard to what the strategy should be.

One could then ask the following question. Given a winning position, how quickly can a
win be forced? We conclude the talk with a reflection on Zermelo’s findings as well as the
powerful, non-intuitive consequences of his results.
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1 A Game of Tic-Tac-Toe

1.1 Introduction

On the 19th of February, I started my talk by playing this game with a member of the audience.

Figure 1: Game of Tic-Tac-Toe

Unsurprisingly, this game ended in a draw. As O-mar,
I spent the preceding 2 hours perfecting my strategy to
force this result.

A perfect game entails making the best moves at each
phase of the game. As long as I played perfectly, I could
force a draw.

My opponent, X was not too shabby either, who
played a perfect game. Knowing the indices Xi, Oi

denote the progression of the game, let us study its
anatomy.
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We cannot list all the deviations of the game, as there are 9! 1 of those. Instead, let us consider
the sub-game which starts at the 6th node, and follows the blue path.

19! > 8.
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I had to choose a square In Move 6. My strategy was to

1. assume X will play the best moves;

2. think about the terminating positions of the game.

Notice that any other move at the 6th node would have led to winX , assuming perfect play.

1.2 Key Takeaways

Indeed, Tic-tac-toe is a solved game, and its solution is a draw assuming perfect play. Proof of
this fact is neither provided in this paper, nor in Zermelo’s argument, which is of the existence
type. The fact is, however, fairly easy to see here.

With this brief introduction, we should be ready to sculpt our understanding into formal rigor.
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2 The Theorem of Zermelo

We proceed with our discussion by formalising the simple notions we have covered so far, with a
main goal of building up to Zermelo’s theorem.

2.1 Formalisation

Definition 2.1 (Game). A two player game with players P1, P2 consists of

1. a set of moves;

2. a set of rules that govern which positions are legal (allowed) in each turn;

3. a set of terminal positions where the game ends. Each terminal position has an associated
outcome Ω̄ ∈ {WP1 , D, LP1} =: Ω.

A sub-game is a subset of a game starting at move k less than the maximum game length.

This is a simple formalisation of the natural concept of a two-player game.

Definition 2.2 (Move). A move is a sequence of actions in which the players alternate with
each turn.

In a game of tic-tac-toe, we can denote the square in the i−th row and the j−th column with
aij . Then, in the example we saw in 1.1,

m6 = (a22, a11, a33, a13, a12, a32)

denotes the sixth move that was played in the game. We omit the signs, as it is understood that
X starts and O continues.

Exercise. Write down the full game moves.

Definition 2.3 (Perfect Information). A game of perfect information is a game where at each
decision node, each player knows where they are and the path that got them there.

The best way to illustrate this idea is by a non-example. A game of cards is not a game of
perfect information, and the reasoning behind this fact is that the cards with each player are
secret. It constitutes a game of secret information.

Definition 2.4 (Strategy). A strategy is a complete plan of actions; it specifies which action
will take place at each decision node.

My strategy for the game in 1.1 was to start correctly. If a22 is not occupied, I would play it
immediately. Otherwise I would focus on playing one of the corners a11, a13, a31, a33. Then,
the goal would be to not let X win; that is, prevent the game from terminating with winX .

It is helpful to think of the game strategy as a map of directions, which factors out the outcome
of each move, considers the opponent’s possible moves, and decides the suitable way to proceed.

This is a good moment to stop and play a game. ;)
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2.2 Dichotomy of the Game Tree

Example 2.5 (Game). Let this be a two player game with players P1, P2.

W1

L1

D

L1

W1

W1

If the players take turns, who can force a win?

Solution. We start by considering the terminating sub-games of length 1. The game terminates
at the second node, so P2 will make the move. Assuming he plays perfectly, we see that P2 makes
the following choices:

W1

L1

D

L1

W1

W1

⇐⇒

L1

L1

W1

1. in the first node, P2 chooses L1 over W1, in order to win;

2. in the second node, P2 chooses L1 over D, in order to win;

3. in the third node, however, P2 has no choice but W1, so P2 loses.

The first turn is now for P1, for which we have

L1

L1

W1

⇐⇒ W1 ⇐⇒ win1

Therefore a win for P1. □

This idea is the foundation of Zermelo’s proof; that is, we can always reduce the game tree in
the aforementioned construction.
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Theorem 2.6 (Zermelo). In all finite two-person games of perfect information, either one player
has a strategy to force a win, or both players have a strategy to force a draw.

Remark. One could equivalently formulate the theorem as follows. For two players P1, P2 : either
P1 can force a win, or P2 can force a win, or both players can force a draw.

Proof. Induction on maximum length of the game. First, define Ω := {W1, L1, D} to be the set
of outcomes. The outcome is pre-determined for n = 0, such that the outcome Ω0 ∈ Ω. Next, we
consider the case where n = 1 . Only P1 makes a move, and the game will be of the form

Ω1

Ω2

...

Ωl

where the outcomes Ωi ∈ Ω are wins, losses, or draws. We divide this into cases.

1. If all Ωi = W1, then clearly P1 has a strategy to force a win.

2. If there exists Ωk such that Ωm = W1, then P1 has a strategy to play Ωk and force a win.

3. If all Ωi ̸= W1 but there exists an Ωm = D then playing Ωm is a strategy to a draw.

4. If all Ωi = L1, then P2 has a strategy to force a win, that is to do nothing.

Therefore the statement is immediately true for all games of length 1. Assume that the claim
holds for all k < n. To conclude the argument, it is enough to invoke the hypothesis by reducing
the game length to n − 1, which is immediate if we consider the terminating sub-games. And
now consider the case of k = n, which for visual clarity we demonstrate a game of length n = 2 .
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Now that we have reduced the tree to length n− 1, we can apply the induction hypothesis such
that the claim immediately follows! □
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3 Closing Words

3.1 Question by Kalmár

Building up upon the previous result, one could ask the following question. In a winning
position, how quickly can a player force a win? Here is what Kalmár claims.

Corollary 3.1 (Kalmár, 1928). In less than n moves, that is the maximum length of the game.

Proof. Assume the contrary, that the number of moves to win, nw, is less than n, the length
of the game. Then, this implies that the game has terminated before the winning position is
reached.

Next, notice that there is an associated outcome with the termination of the game. Since this
was a winning position, then there clearly must have been a winning strategy in less than n
moves. This concludes the argument. □

3.2 Reflection

We note, however, that Zermelo’s proof shows the existence of a solution, but does not explicitly
provide it. The statement is applicable to all finite games of perfect information, including Chess.
The game of Chess is very complicated; it is however finite.

It is not so clear whether the game of Chess is a win, a loss, or a draw. For instance: Garry
Kasparov, a chess Grandmaster, stated that chess is a draw. This came after a series of matches
with Deep Blue, a computer engine which used the very same idea of backwards induction.

Others say that white can force a win by the ”first-move” advantage. Statistically speaking,
white often prevails when playing against black.

In any case, Zermelo has somewhat bad news for all chess fans out there, mainly due to the
fact that their beloved game is determined. The only condolence for them is the fact that the
solution is not yet known, and that no human mind can grasp the perfect strategy. But, with
the constant surge of technology, and the consistent breakthroughs we see everyday, this reality

might be changing very soon. ξ
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