04th December

Completed Exercises from the lecture on

< Circles >

L. Easy, Page 2; 2. Medium, Pages 3-5; Can be found below. I solved some extra exercises to account for the lack of exercises.

Circles

Easy

90³ 368 × 36

The circle above with center O has a circumference of 36. What is the length of minor arc AC?

Medium

(1) 8e7689e0 SHORT ANSWER Case-Insensitive The number of radians in a 720-degree angle can be written as $a\pi$, where a is a constant. What is the value of \underline{a} ? 0=4 180° := TT radians 720° = 4.180° = 4. Trad = att rad π -1 - 2π 180° = TT radions 1-1. 38

(3) 856372ca MULTIPLE CHOICE One answer only

In the xy-plane, a circle with radius 5 has center (-8, 6). Which of the following is an equation of the circle?

a. $(x-8)^2 + (y+6)^2 = 5$ b. $(x-8)^2 + (y+6)^2 = 25$ c. $(x+8)^2 + (y-6)^2 = 5$ d. $(x+8)^2 + (y-6)^2 = 25$

Equation of the circle is given by $(x-a)^2 + (y-b)^2 = r^2$ for a circle centered at (a,b) of radius r

(2) **2266984b** Multiple CHOICE One answer only
$$x^2 + 20x + y^2 + 16y = -20$$

The equation above defines a circle in the xy-plane. What are the coordinates of the center of the circle?

a.
$$(20, 16)$$

b. $(10, 8)$
c. $(-20, -16)$
d. $(-10, -8)$

Idea: bring $\chi^2 + 20\chi + \chi^2 + 26\chi = -20$ to $(\chi - \text{something})^2 + (\chi - \text{other-thing})_{=}^2 r^2$ method: completing the square, $(\chi + \text{sth})^2 = \chi^2 + 2 \cdot \text{sth} \cdot \chi + \text{sth}^2$ $(\chi + \text{sth})^2 = \chi^2 + 2 \cdot \text{sth} \cdot \chi + \text{sth}^2$

$$\begin{array}{c} x^{2} + 20x + \\ & \text{missing:} \\ & \text{sth}^{2} \\ & \text{sth}^{2} \\ \end{array} \begin{array}{c} \text{issing:} \\ & \text{sth}^{2} \\ \end{array} \begin{array}{c} \text{issing:} \\ & \text{sth}^{2} \\ \end{array} \begin{array}{c} \text{issing:} \\ & \text{a.sth} \\ & \text{a.sth} \\ & \text{w} \\ \end{array} \end{array}$$

Altogether, $x^{2}+20x+y^{2}+16x = (x-10)^{2}-10^{2}+(y+8)^{2}-8^{2}=-20$ = $(x-10)^{2}+(y+8)^{2}=8^{2}+10^{2}-20$