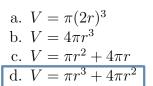
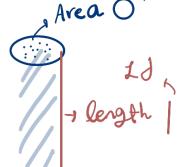
27th November

Completed Exercises from the lecture on

Lrea & Volume >

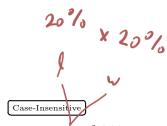

L. Hard, Pages 2-4;


Can be found below.

Hard

(1) $\mathbf{b0dc920d}$ Multiple choice One answer only

A manufacturer determined that right cylindrical containers with a height that is 4 inches longer than the radius offer the optimal number of containers to be displayed on a shelf. Which of the following expresses the volume, V, in cubic inches, of such containers, where r is the radius, in inches?



Area: 2 dim

Volume: 3 din

length / x area O

$$\frac{h}{\pi r^2} = \pi r^3 + 4\pi r^2$$

(2) **5b2b8866** SHORT ANSWER

A rectangular poster has an area of 360 square inches. A copy of the poster is made in which the length and width of the original poster are each increased by 20%. What is the area of the copy, in square inches?

Counter example 360 20% 360

Area =
$$360 \text{ in}^2$$

360 +20%. 360

Aol = l. Wold = 360 in2

lnew = (1+20%) low

Wnew = (1+20%) Wold

A new = lnew · Wnew =

(1+20%) Pold. (1+20%) Wold = (lord + 20% low) (wold + 20% word)

= lois · Vols + low · 20% woll + 20% lois · Wols + 20% lois · 20% wois

lold wold + 2.20% · lold · Wold + (20%)? · lold · Wold

= (1+20%) Pold. (1+20%) Wold

(1+20%) (1+20%) Wold Rold

 $= (1+20\%)^2 W_{\text{old lold}} = 518.4 \text{ in}^2$ = 360