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Mathematical Modeling (i) Spring 2025

Exericse 1. A cup of tea at 90◦ C is in a room at constant temperature of 20◦ C. By Newton’s Law
of Cooling, the change of the temperature in time is proportional to the difference between the current
temperature of the tea and the room temperature. It is not affected by the amount of tea.

a) Derive a differential equation that models the temperature T (t) over time. Afterwards, find the
solution of the differential equation.

Proof. Let k > 0 and T be the temperature of tea at time t, with initial temperature T0. The following
differential equation

d

dt
T = −k(T − 20)

expresses the assumption that the change in temperature is proportional to the difference of T and 20◦

C. By separation of variables, we obtain

dT

T − 20 = −kdt =⇒
∫ T

T0

dT̃

T̃ − 20
=
∫ t

0
−k dt̃

=⇒ ln(T̃ − 20)
∣∣∣T
T0

:= ln(T − 20)− ln(T0 − 20) = −kt

e(·)
=⇒ T − 20 = e−kt(T0 − 20) =⇒ T = 20 + e−kt(T0 − 20)

For an initial temperature of 90◦ C, we get that T (t) = 20+e−kt ·70 solves the differential equation. ξ

b) The temperature of the tea is 70◦ C after 5 minutes. Determine the constant which describes the
speed of cooling. When will the temperature of the tea be 40◦ C?

Solution. It is given that T (5) = 70, so that

70 = T (5) := 20 + 70e−k·5 =⇒ e−k·5 = 5
7 =⇒ −5k = ln(5

7) =⇒ k = −
ln(5

7)
5

gives the cooling rate. For T (t) = 40, this is just

40 = T (t40) = 20 + 70e−k·t40 =⇒ 20
70 = e−k·t40

=⇒ ln(2
7) = −k · t40

=⇒ −
ln(2

7)
k

:= ��−
ln(2

7)

��−
ln(5

7)
5

= t40

=⇒ t40 = 5 ·
ln(2

7)
ln(5

7)
≈ 18.62 minutes. ξ
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Mathematical Modeling (i) Spring 2025

Exercise 2. Find the solution of the differential equation d

dx
y(x) = 2xy(x) + x3.

Solution. Note that the aforementioned differential equation is one that is linear and inhomogeneous.
We therefore make use of the Ansatz y = uv to get

u′v + uv′ =: d

dx
(uv)︸︷︷︸
:=y

= 2x · uv + x3. (*)

Next, notice that the choices

u′ = 2x · u & v′ = x3

u
, (i.1)

satisfy (*) by design. We equated the two sides of (*) by comparison. This is the core idea, and with
that we may proceed to solve two simpler differential equations, starting with u.

u′ = 2x · u =⇒
∫ u

u0

du

u
=
∫ x

x0
2x dx =⇒ ln(u)− ln x0︸ ︷︷ ︸

ln( u
u0

)

= x2 − x2
0

=⇒ u = u0ex2−x0
Then, v′ may be written as

d

dx
v = u−1

0 x3e(x2
0−x2) =⇒ v = v0 + u−1

0 ex2
0︸ ︷︷ ︸

constants

·
∫ x

x0
x3e−x2

dx

with the integral evaluating to

∫ x

x0
x3e−x2

dx
t=x2
=

dt=2xdx

1
2

∫ x2

x2
0

te−tdt = 1
2

−te−t −

:=e−t︷ ︸︸ ︷∫
−e−t dt

 ∣∣∣x
2

x2
0

= −1
2e−t(t + 1)

∣∣∣x2

x2
0

= 1
2
(
e−x2

0(x2
0 + 1)− e−x2(x2 + 1)

)
.

Therefore we get
v = v0 + 1

2u−1
0 ex2

0

(
���*

1
e−x2

0(x2
0 + 1)− e−x2(x2 + 1)

)

= v0 + 1
2u−1

0

(
x2

0 + 1− ex2
0−x2(x2 + 1)

)
Finally, recall that y = uv gives the solution.

y = u0 · ex2−x2
0

(
v0 + 1

2u−1
0

(
x2

0 + 1− ex2
0−x2(x2 + 1)

))
= u0v0︸ ︷︷ ︸

:=y0

ex2−x2
0 + 1

2ex2−x0(x2
0 + 1)− 1

2(x2 + 1). ξ

Remark. For more on this technique, seek page 5 of lectures 2, 3.

i.2
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Mathematical Modeling (i) Spring 2025

Exercise 3. Find the solution of the differential equation d

dx
y(x) = 2xy(x) + (1 + x2)y2(x).

Proof. Using the ansatz y = uv we get that

d

dx
uv = u′v + uv′ = 2x · uv + (1 + x2) · u2v2

By comparison of terms, set

u′ = 2xu (*)

v′ = (1 + x2) · uv2 (**)

then clearly u = Cu · ex2
. The second equation gives

dv

dx
=: v′ = (1 + x2) · Cu · ex2 · v2 =⇒ 1

v2 dv = Cu ·
(
ex2 + x2ex2) · dx

=⇒ −1
v

= Cu ·
∫

(1 + x2) · ex2
dx

=⇒ v = −C−1
u · 1∫

(1 + x2) · ex2dx
.

All-in-all, this gives

y = ��
��−C−1

u · ��Cu · ex2∫
(1 + x2) · ex2dx

= − ex2∫
(1 + x2) · ex2dx

.

We do not attempt to compute the integral
∫

(1 + x2) · ex2
dx, since it is non-elementary. This concludes

the argument. ξ
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Mathematical Modeling (ii) Spring 2025

Exercise 1 Consider the second-order inhomogeneous differential equation

d2

d2x
y(x)− 3 d

dx
y(x) + 2y(x) = ex.

a) Find the general solution to the corresponding homogeneous equation.
Solution. A general solution to the homogeneous equation of the form

a · d2

d2x
y(x) + b · d

dx
y(x) + c · y(x) = 0

is well-studied∗, and the idea is to consider the choice of y = eλx. This is great, since this choice



y(x) = eλx

d

dx
y(x) = λeλx

d2

d2x
y(x) = λ2eλx

=⇒ a · λ2eλx + b · λeλx + c · eλx = eλx
(
a · λ2 + b · λ + c

)
= 0

=⇒ a · λ2 + b · λ + c = 0 (since eλx > 0)

in turn yields a polynomial equation, which we are very happy to solve. It simplifies the task to finding
λ. Let us indeed proceed in that very-same spirit, and solve for a = 1, b = −2, c = 2.

1 · λ2 − 3 · λ + 2 = 0 =⇒ λ1 = 1, λ2 = 2 =⇒

y1(x) = ex

y2(x) = e2x
.

Notice that we ended up with two solutions, when we were looking for one. This is a good moment to
recall that any linear combination of homogeneous solutions gives a homogeneous solution,

y(x) = Aex + Be2x for A, B ∈ R

by linearity of the differential operator. As an exercise, try to verify yourself that

d2

d2x
y(x)− 3 d

dx
y(x) + 2y(x) = 0

for the choices of

• y(x) = ex

• y(x) = Aex

• y(x) = ex + e2x

• y(x) = Aex + Be2x. ξ

∗see page 10, lectures 2 and 3 on moodle.

ii.1
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Mathematical Modeling (ii) Spring 2025

b) Consider the second-order inhomogeneous differential equation

d2

d2x
y(x)− 3 d

dx
y(x) + 2y(x) = ex.

Find the general solution to the inhomogeneous equation.

Proof. We will use the following lemma from class,

Lemma 1.5 (Lectures 2,3 - Page 9). Consider the following inhomogeneous equation

a · d2

d2x
y(x) + b · d

dx
y(x) + c · y(x) = f(x).

The general solution y(x) may be written as

y(x) = yh(x) + yp(x)

where yh(x) is the general solution of the homogeneous equation, and yp(x) is a particular solution of
the inhomogeneuos equation.

In the previous problem, we established the homogeneous solution to be

yh(x) = Aex + Be2x for A, B ∈ R.

If we can find a particular solution yp(x), then we are done. Now, to find yp(x), one may proceed in the
spirit of the quick method† of undetermined coefficients. One attempts to guess an Ansatz of a similar
structure to f(x), equal to ex in our case. Another way to proceed is with the variation of constants,
which is more informative.‡

The idea is to equate yp(x) to yh(x), but with coefficients that vary in x. Instead of constants A, B, we
write

yp(x) = A(x)ex + B(x)e2x

as functions of x. This reduces the problem to that of finding the coefficients A(x), B(x), since that

automatically describes yp(x). With this description, let us compute d

dx
yp(x), d2

d2x
yp(x).

d

dx
yp(x) := A′(x)ex + B′(x)e2x + A(x)ex + 2 ·B(x)e2x.

Let us enforce a restriction on A′(x), B′(x). This will become very useful in a moment.

A′(x)ex + B′(x)e2x = 0. (1)
†Page 2, Lectures 4,5, on moodle.
‡This is a subjective opinion.

ii.2
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Mathematical Modeling (ii) Spring 2025

This implies

d

dx
yp(x) =(1) A′(x)ex + B′(x)e2x︸ ︷︷ ︸

= 0 by assumption (1)

+A(x)ex + 2 ·B(x)e2x = A(x)ex + 2 ·Be2x. (*)

Next, we compute d2

d2x
yp(x).

d2

d2x
yp(x) = d

dx

(
d

dx
yp(x)

)
=(∗) d

dx

(
A(x)ex + 2 ·B(x)e2x

)
= A′(x)ex + 2 ·B′(x)e2x + A(x)ex + 4 ·B(x)e2x (**)

In total, we obtain


y(x) = A(x)ex + B(x)e2x

d

dx
y(x) = A(x)ex + 2 ·Be2x (by *)

d2

d2x
y(x) = A′(x)ex + 2 ·B′(x)e2x + A(x)ex + 4 ·B(x)e2x. (by **)

Plugging this into the inhomogeneous differential equation gives

ex = d2

d2x
y(x)− 3 d

dx
y(x) + 2y(x)

=

=
d2

d2x
y(x)︷ ︸︸ ︷

A′(x)ex + 2 ·B′(x)e2x + A(x)ex + 4 ·B(x)e2x−3

=
d

dx
y(x)︷ ︸︸ ︷(

A(x)ex + 2 ·B(x)e2x
)

+2

=y(x)︷ ︸︸ ︷(
A(x)ex + B(x)e2x

)
= A′(x)ex + 2 ·B′(x)e2x +

����������:0
A(x)ex (1− 3 + 2)︸ ︷︷ ︸

=0

+
������������:0
B(x)e2x (4− 3 · 2 + 2)︸ ︷︷ ︸

=0

= A′(x)ex + 2 ·B′(x)e2x. (2)

Now that we have two equations (1), (2) in the two variables A′(x), B′(x), we may express it as a system
of linear equations,

A′(x)ex + B′(x)e2x = 0 (1)

A′(x)ex + 2 ·B′(x)e2x = ex (2)
=⇒

(
ex e2x

ex 2e2x

)(
A′(x)
B′(x)

)
=
(

0
ex

)
.

which has the solution vector
(A′(x)

B′(x)
)

=
(−1

e−x

)
. To find A(x), B(x), we integrate disregarding the con-

ii.3
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stants § to get

A′(x) = −1 =⇒ A(x) = −x

B′(x) = e−x =⇒ B(x) = −e−x.

That in turn yields yp(x) =
:=A(x)ex+B(x)e2x︷ ︸︸ ︷
−xex − ex . Utilising the homogeneous solution yh(x) from the previous

problem, (1.5) allows us to write

y(x) =

yh(x)︷ ︸︸ ︷
Aex + Be2x +

yp(x)︷ ︸︸ ︷
−xex − ex

= Aex + Be2x − xex for A, B ∈ R. ξ

c) Consider the second-order inhomogeneous differential equation

d2

d2x
y(x)− 3 d

dx
y(x) + 2y(x) = ex.

Find the specific solution that satisfies the conditions y(0) = 1 and
(

d
dxy)(0) = 0.

Solution. Simply, one combines the result from the previous exercise

y(x) = Aex + Be2x − xex

with the initial conditions to obtain a system of equations

1 = y(0) = A + B

0 = y′(0) = Ae0 + 2Be2·0 − e0 − 0 · e0

= A + 2B − 1

which has the solutions A = 1, B = 0. We write

y(x) = ex − xex. ξ

§We can do this, since the constants are accounted for in the homogeneous equation. For example, if A(x) = −x + c
then A(x)ex = −xex + cex which we combine with the constant term Aex from yh(x) = Aex + Be2x.

ii.4
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Exercise 2 The logistic equation is a model for population growth with a maximum sustainable
population. It is given by

d

dt
P (t) = rP (t)

(
1− P (t)

K

)
,

where P (t) denotes the size of the population at time t, r > 0 is the (constant) growth rate of the
population, and K > 0 is the maximum sustainable population.

a) Sketch the direction field for the logistic equation.

Sketch. An ordinary differential equation d

dt
x⃗(t) = f(x⃗(t)) is defined by a vector field f. In this case,

the equation only has one variable, and thus the vector field is one-dimensional.¶ Moreover, f is given
exactly by the logistic equation

f : R→ R with P 7→ f(P ) = rP (1− P

K
).

A very rough sketch of the vector field is therefore

0 K P0 K P

Vector Field for Logistic Equation f(P ) = rP
(
1− P

K

)
ξ

b) Explain in words how P (t) changes when P (t) ≪ K, P (t) = K, and P (t) > K. How does P (t)
behave for large times?

Explanation. There are three cases to consider.

P (t)≪ K | First, let it be clear that P (t)≪ K means that P (t) is significantly smaller than K. If this is the
case, then the fraction P (t)

k is very small, and may be neglected. Then, 1− P (t)
K is close to 1, and

d

dt
P (t) ≈ rP (t).

This is the equation for exponential growth with rate r. This means that P (t) grows almost expo-
nentially towards K, and we may write P (t) ≈ ert.

P (t) = K | In that case, 1− P (t)
K = 0, and

d

dt
P (t) = rP (t)

�
���

��*
0

(1− P (t)
K

) = 0

¶Seek page 8 of Lectures 4,5 for examples.

ii.5
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implies that P (t) is a constant, fixed value. This is a natural consequence, since the constant K

does not depend on t. The population is then in a state of equilibrium at P (t) = K.

P (t) > K | Finally, 1− P (t)
K

< 0 gives
d

dt
P (t) = rP (t)(1− P (t)

K
)︸ ︷︷ ︸

<0

< 0

meaning that the population is too big, and decays towards P (t) = K.

In summary, the relation between P (t) and K characterizes d

dt
P (t). Precisely: as t gets larger, the

population P (t) tends to a state of equilibrium P (t) = K. ξ

c) Find the solution to the logistic equation with initial condition P (0) = P0.
Solution. First, let us re-write the equation as

dP

dt
= rP

(
1− P

K

)
Next, separate the variables and rewrite

dP

P · (1− P

K
)

= r dt as K

P · (K − P ) · dP = r dt.

Partial Fractions. The left-hand side is difficult to integrate in this form. It would be much easier if
we could write it as two terms A

P and B
K−P for some constants A, B. Luckily, the partial fraction method

provides just that. Assume indeed that

K

P · (K − P ) = A

P
+ B

K − P

×P (K−P )=⇒ K = A · (K − P ) + B · P =⇒ K = P · (B −A) + A ·K.

Notice that the first statement in this chain of implications is an identity‖ on P , and thus we may plug-in
P = 0 in the final statement to get

P · (B −A) + A ·K = K
P =0=⇒ A = 1.

By substituting A = 1 into the equation and solving for B, we get that

P · (B − 1) + K = K =⇒ B = 1

As an exercise, you may check that K

P · (K − P ) = 1
P

+ 1
K − P

.

‖is true for all P .

ii.6
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Integration. With the partial fractions expression, we write

K

P · (K − P ) · dP = r dt
Partial Fractions=⇒ 1

P
+ 1

K − P
= r dt =⇒

∫ 1
P

dp +
∫ 1

K − P
dp =

∫
r dt

=⇒ ln(P )− ln(K − P ) = rt + C =⇒ ln
(

P

K − P

)
= rt + C.

P(t) =? Solving for P, we get

ln
(

P

K − P

)
= rt + C =⇒ P

K − P
= ert · eC =⇒ P (t) = Kert · ec

1 + ert · eC
for C ∈ R.

Initial Condition. To find the constant C (rather eC), we utilise the initial condition P (0) = P0 to
write

P0 = P (0) = Ker·0 · eC

1 + er·0 · eC
= KeC

1 + eC
=⇒ eC = P0

K − P0
.

Plug this into the expression to get

P (t) = Kert ·A
1 + ert ·A

for A = P0
K − P0

. ξ

ii.7
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Exercise 3 Consider the system of ODEs


d
dtx(t) = x(t)− y(t)
d
dty(t) = x(t) + y(t).

a) Sketch the vector field.

Sketch. Let us start with some observations, and compute gradient at different vectors
[
x

y

]
.

1. (x, y) = (1, 0) =⇒


dx

dt
= 1− 0 = 1

dy

dt
= 1 + 0 = 1

2. (x, y) = (0, 1) =⇒


dx

dt
= 0− 1 = −1

dy

dt
= 0 + 1 = 1

3. (x, y) = (−1, 0) =⇒


dx

dt
= −1− 0 = −1

dy

dt
= −1 + 0 = −1

4. (x, y) = (0,−1) =⇒


dx

dt
= 0−−1 = 1

dy

dt
= 0 +−1 = −1

A positive gradient in x indicates growth in the x−direction, and a negative gradient in y indicates decay
in the y−direction. This is a good point to stop and observe some nice drawings.

−2 −1 0 1 2−2

−1

0

1

2

Equilibrium (1, 1)

(−1, 1)

(−1,−1)

(1,−1)

x

y

Vector Field Directions − I

It seems that there is a tendency to go counter-clockwise. It is not clear just yet whether the trajectories

converges inward or diverges outward. For this, let us compute the gradient for vectors
[
x

y

]
with greater

magnitude.
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1. (x, y) = (2, 0) =⇒


dx

dt
= 2− 0 = 2

dy

dt
= 2 + 0 = 2

2. (x, y) = (0, 2) =⇒


dx

dt
= 0− 2 = −2

dy

dt
= 0 + 2 = 2

3. (x, y) = (−2, 0) =⇒


dx

dt
= −2− 0 = −2

dy

dt
= −2 + 0 = −2

4. (x, y) = (0,−2) =⇒


dx

dt
= 0−−2 = 2

dy

dt
= 0 +−2 = −2

The gradients seem to get greater in magnitude. This indicates an unstable vector field whose trajectories
diverge outwards with time.

−4 −3 −2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3

(1, 1)

(−1, 1)

(−1,−1)

(1,−1)

(2, 2)

(−2, 2)

(−2,−2)

(2,−2)

x

y
Vector Field Directions − II

With these observations, the vector field should take on the form

−2 −1 0 1 2−2

−1

0

1

2

x

y

Vector Field for d
dt

(x
y

)
=
(x−y

x+y

)

0

1

2

3

4
Ve

ct
or

M
ag

ni
tu

de

ξ
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b) Consider the system of ODEs 
d
dtx(t) = x(t)− y(t)
d
dty(t) = x(t) + y(t).

Using the vector field sketch, sketch a few representative solution trajectories in the phase space.

Sketch. Using our vector field sketch, we pick some starting points and see where the vector field flows
them to.

−2 −1 0 1 2−2

−1

0

1

2

x

y

Trajectories

0

1

2

3

4

Ve
ct

or
M

ag
ni

tu
de

ξ

c) Consider the system of ODEs 
d
dtx(t) = x(t)− y(t)
d
dty(t) = x(t) + y(t).

Determine if the orbits are periodic.
Hint: Look at the arrows in the vector field as you move away from the origin. Do they drive you further
away, or do they guide you back toward a loop? If the arrows push you away, the orbits are not periodic.

Solution. Clearly, and as demonstrated above, the orbits are not periodic. ξ
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Sketching a Vector Field, but Analytically − Bonus Consider the system of ODEs


d
dtx(t) = x(t)− y(t)
d
dty(t) = x(t) + y(t).

Describe the analytical behaviour of this system.

Description. First, observe that the system of equations is linear, which is very nice. Let us combine
the two first-order differential equations into one degree-two differential equation.

x′ = x− y
d
dt=⇒ x′′ =

:=x−y︷︸︸︷
x′ − y′︸︷︷︸

:=x+y

= −2 · y︸︷︷︸
:=x−x′

= −2(x− x′) =⇒ x′′ + 2x′ − 2x = 0

This is exactly the same setup as in 1a). Proceed with the choice of x = eλt, and let us solve for λ.

x′′ + 2x′ − 2x = 0 x(t)=eλt

=⇒ et(λ2 + 2λ− 2) = 0 =⇒ λ1,2 = 2±
√

4− 4 · 2
2 = 1± i.

Next, the following remark is quite useful,

Remark. If λ1,2 = α + iβ are two complex solutions to the characteristic equation, then

eαt cos(βt) & eαt sin(βt)

are two linearly independent solutions.∗∗

The general solution x(t) is the linear combination of all independent solutions. The remark thus allows
us to write the solutions for α = 1, β = 1 to get

x(t) = et(A cos t + B sin t).

Next, y = x− x′ gives

y(t) = ((((((((((
et(A cos t + B sin t)−

(
((((((((((
et(A cos t + B sin t) + et(−A sin t + B cos t)

)
= et(A sin t−B cos t).

With the solution x(t) = et(A cos t + B sin t)

y(t) = et(A cos t−B sin t)

in hand, let us attempt to study the behaviour of x(t), y(t) with time. First, the solution is unstable
in the sense that its magnitude grows exponentially with time; credited to the factor et. The cos t, sin t

factors add a counter-clockwise rotation to the field. To conclude, the trajectories spiral outwards in a
counter−clockwise direction. The vector 0⃗ must therefore be the only equilibrium point. ξ

∗∗We know this from class. See the Remark on Page 14, Lectures 2 and 3 on moodle.
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Exercise 1 Let the velocity be defined as v(t) = d
dtx(t).

a) Express the second-order differential equation d2

d2t
x(t) + k

mx(t) = 0, which models an undamped
harmonic oscillator without external forcing, as an equivalent system of first-order ordinary differential
equations using the velocity variable v(t).

Solution. If v = x′ as the question assumes, then v′ = x′′ and we may re-write the second-order differ-
ential equation as a system of two equations, both of first-order. ξ

x′ = v (iii.1)

v′ = − k

m
· x (iii.2)

b) Sketch the vector field and phase portrait corresponding to the system of first-order ODEs from part
a) for the parameter values k = 2 and m = 2.

Remark. The choice k = m = 2 gives rise to

x′ = v

v′ = −x
. This is precisely Example 1 from the lecture,

differing only by a minus sign.∗ This difference is, in fact, reflected in the direction of rotation, which
is clockwise compared to anti-clockwise sketch of the example. There, a similar phase portrait is offered
as well. We proceed nevertheless without this knowledge.

Sketch. The system corresponding to the choices k = m = 2 is given by f(x, v) =
( v

−x

)
. To plot its

associated vector field and phase portrait, one simply computes the gradient at a few points in the
xv−plane to get the vector field, then traces some trajectories along these gradient vectors. †

−2 0 2

−2

0

2

x

v

Vector Field Sketch

0

1

2

3

4

||(
x

,v
)||

−2 0 2

−2

0

2

x

v

Phase Portrait

ξ

∗See Page 8, Section 1.3, Lectures 4 & 5
†See (ii.3) for more on this technique.
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c) Sketch the vector field and phase portrait for the same system with parameter values k = 8 and
m = 2. Describe how and why the phase portrait changes when the parameter k is increased.

Sketch. The system of equations


x′ = v

v′ = − k

m
· x

tells us that dx

dt
= v and dv

dt
= − k

m
·x. Since both the

vector field and phase portrait live in the xv−plane, it is a good idea to eliminate the time component.
For this, compute dv

dx using the chain rule to get dv
dt ·

dt
dx = −k

m ·
x
v . This is a separable differential equation!

v dv = − k

m
· x dx

∫
...

=⇒ v2

2 = −k

m
· x2

2 + C
×2=⇒ v2 = − k

m
· x2 + 2C

+ k
m

·x2

=⇒ v2 + k

m
· x2 = 2C

× m
2=⇒ 1

2mv2 + 1
2kx2 = mC

For physicists, this should be familiar! The expression 1
2 ·mv2 encodes potential energy, whereas kinetic

energy is displayed as 1
2 · kx2. This is the conservation law of energy. To see this, set E = mC and write

1
2mv2(t) + 1

2kx2(t) = E(t)

= E(0) := 1
2mv2(0) + 1

2kx2(0).

The equation E(t) = E(0) encodes that the initial total energy E(0) is preserved as time flows. All
points of the solutions

(x
v

)
with initial condition

(x0
v0

)
should therefore lie on an ellipse.‡

−2 0 2

−2

0

2

x

v

Vector Field Sketch

1

2

3

4

||(
x

,v
)||

−2 0 2

−4

−2

0

2

4

x

v

Phase Portrait

E = 0.25
E = 0.5
E = 2

E = 6.25
E = 16

To study the change in phase portrait upon varying k, consider the horizontal endpoints of the ellipse
on the x−axis. There, we have v = 0 and E = 1

2kx2. The energy is constant§, therefore increasing k

implies that x2 must decrease. This forces both endpoints to get closer to the origin. You may convince
yourself by a similar argument that increasing m shifts the ellipse in the vertical direction. ξ

‡The conservation law of energy is an equation of an ellipse. Do you see this?
§by the conservation law
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Exercise 2 Consider the function f : R→ R defined by f(x) = x
2
3 .

Before commencing with the proof, let us give two precise definitions.¶

Definition 1.13 (Global Lipschitz Continuity). A function f : R → R is locally Lipschitz continuous if
there exists an L > 0 such that

|f(x)− f(y)| ≤ L|x− y|

for all x, y ∈ R.

Definition 1.13 (Local Lipschitz Continuity). A function f : R → R is globally Lipschitz continuous if
for every x0 we may find a neighbourhood Ux0 around it such that

|f(x)− f(y)| ≤ Lx0 |x− y|

for all x, y ∈ Ux0 . The subscript x0 signifies the dependence of L on x0.

Next, proceed to prove the following statements.

a) Show that f is not locally Lipschitz continuous.

Proof. First, notice that f(x) := x
2
3 = 3√

x2 behaves not-so-nicely near x = 0. Formally, the derivative

f ′(x) = 2
3x− 1

3

exists for x ̸= 0, and is unbounded‖ as x approaches 0. This makes it a possible candidate point to
exploit. Proceed, and suppose for the sake of contradiction that f is Lipschitz. Then this suggests that
we may find δ, Lx0 > 0 such that

|x
2
3 − y

2
3 | ≤ Lx0 |x− y|.

for all x, y ∈ (−δ, δ). To utilise our earlier observation, set y = 0 and let x→ 0+ to get

x
2
3 ≤ Lx0x

×x−1
=⇒ x− 1

3 ≤ Lx0 (*)

for some constant L. Notice, however, that (*) implies that

∞ = lim
x→0+

x− 1
3 ≤ Lx0 .

⇝

Clearly, there is no constant Lx0 that works, thus the assumption fails. ξ

¶Do you remember this from Analysis I? If not, seek Page 1, Lecture 8
‖|f ′(x)| → ∞
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b) Consider the function g : R → R defined by g(x) = x3. Show that g is locally Lipschitz continuous
but not globally Lipschitz continuous.

Proof. To show that g is locally Lipschitz continuous, choose x0 ∈ R, and let Ux0 = [x0 − δ, x0 + δ] for
some positive δ. Notice that Lipschitz continuity is equivalent to

|g(x)− g(y)| ≤ Lx0 |x− y| ⇐⇒ |g(x)− g(y)|
|x− y|

≤ Lx0 .

Proceed with yet another observation − g is continuous on the closed interval [x0 − δ, x0 + δ] and
differentiable on the open interval (x0 − δ, x0 + δ). Apply the mean value theorem to establish the
existence of some ξ ∈ [x0 − δ, x0 + δ] for which

g′(ξ) = |g(x)− g(y)|
|x− y|

for all x, y ∈ [x0 − δ, x0 + δ]. Combining both facts, we notice that

|g(x)− g(y)|
|x− y|

= g′(ξ) ≤ Lx0 .

To bound the derivative g′(x) = 3x2 over [x0 − δ, x0 + δ], we note that max(|x0 − δ|, |x0 + δ|) maximizes
g. Therefore, the choice of

Lx0 := max(|x0 − δ|, |x0 + δ|)

gives the result. Observe how L always depends on the choice of x0. In that respect, it is not universal.

In a style similar to a), we show that g is not globally Lipschitz. Assume for the sake of contradiction
that g is globally Lipschitz, then we establish the existence of L for which

|x3 − y3| ≤ L|x− y|.

for any x, y ∈ R. Therefore, it would not cause an issue if one makes the choice of y = 0 to get that

|x3|≤L · |x| ×|x−1|=⇒ |x2| ≤ L.

The implication is clearly false, since the statement should hold for all x ∈ R. Taking |x| −→ ∞ gives
the contradiction. ⇝

iii.4



Mathematical Modeling (iii) Spring 2025

Exercise 3 Prove that every continuously differentiable function f : R → R is locally Lipschitz
continuous. Hint: One possibility is to use the inequality

∣∣ ∫ y
x g(t) dt

∣∣ ≤ ∫ y
x |g(t)| dt.

The extreme value theorem in higher dimensions is stated later in Lectures 14 & 15.

Theorem 2.24 (Extreme Value Theorem). If f : S → Rd is continuous on a closed and bounded set
S ⊆ Rd, then f attains a minimum and maximum value on S. Precisely, one writes

(∀x⃗ ∈ S)(∃ a⃗, b⃗ ∈ S) : f (⃗a) ≤ f(x⃗) ≤ f (⃗b).

It is a good idea nevertheless to include it here, as it recaps the one-dimensional case.

Proof. Given x0, the goal is to show that we can find a neighbourhood Ux0 on which the Lipschitz
condition is satisfied. Assume indeed that f is continuously differentiable. Then, f ′ is continuous, and
for x0 ∈ R we may choose Ux0 = [x0 − δ, x0 + δ] for some δ > 0. Theorem 2.24 gives an upper bound

|f ′(t)| ≤Mx0 (*)

for every t ∈ Ux0 . Notice that for fixed δ, the value of Mx0 depends on x0. Next, write

f(y)− f(x) =
∫ y

x
f ′(t) dt (fundamental theorem of calculus)

for x, y ∈ Ux0 . We are yet to utilize the hint. To account for this shortcoming, write

|f(y)− f(x)| =
∣∣∣∣∫ y

x
f ′(t) dt

∣∣∣∣ ≤ ∫ y

x
|f ′(t)| dt

(∗)
≤ Mx0 · (y − x) ≤Mx0 · |x− y|.

This statement is true for all x, y ∈ Ux0 with x ≤ y. The point x0 was arbitrarily chosen, therefore f

must be locally Lipschitz. ξ
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Exercise 1 Let the functions dj : R2 × R2 → R+ with j ∈ {1, 2,∞} be defined by

• d1(x, y) = |x1 − y1|+ |x2 − y2|,

• d2(x, y) =
√
|x1 − y1|2 + |x2 − y2|2,

• d∞(x, y) = max
{
|x1 − y1|, |x2 − y2|

}
.

a) Show that all three functions define a metric on R2.

Definition 1.15 (Section 1.5). ∗ Let d : R2×R2 → R+ be a map into the positive reals. We say that d is
a metric if it is

0. d(x, y) = 0 ⇐⇒ x = y positive-definite

1. d(x, y) = d(y, x) symmetric

2. d(x, y) + d(y, z) ≥ d(x, z) triangle-inequality

for all x, y, z ∈ R.

Proof. We proceed metric-by-metric.

• d1(x, y) = |x1 − y1|+ |x2 − y2|. We would like to show that

0. d1(x, y) = 0 ⇐⇒ x = y. This is easy, since

d1(x, y) = 0 ⇐⇒
≥0︷ ︸︸ ︷

|x1 − y1|+ |x2 − y2|︸ ︷︷ ︸
≥0

⇐⇒ |x1 − y1| = 0 = |x2 − y2| ⇐⇒ x1 = y1 & x2 = y2

⇐⇒ x = y.

1. d1(x, y) = d1(y, x). This follows from |x| = −|x|, since

d1(x, y) = |x1 − y1|+ |x2 − y2| = |y1 − x1|+ |y2 − x2| = d2(x, y)

2. d1(x, y) + d1(y, z) ≥ d(x, z). The left-hand expression is given by

d1(x, y) + d1(y, z) := |x1 − y1|+ |x2 − y2|+ |y1 − z1|+ |y2 − z2|

= |x1 − y1|+ |y1 − z1|︸ ︷︷ ︸
≥|x1−z1|

+
≥|x2−z2|︷ ︸︸ ︷

|x2 − y2|+ |y2 − z2| (1−∆)

≥ |x1 − z1|+ |x2 − z2| =: d1(x, z)
∗See Page 10, Lectures 6 & 7
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where we make use of the 1− triangle inequality (1−∆). Let us justify its usage with a proof.

Lemma (1−∆). The inequality |a− b|+ |b− c| ≥ |a− c| holds for all a, b, c ∈ R.

Proof. First, |a| is defined to be max{a,−a}. With this, write
 a ≤ |a| and b ≤ |b| =⇒ a + b ≤ |a|+ |b|

−a ≤ |a| and − b ≤ |b| =⇒ −a− b ≤ |a|+ |b|
=⇒ |a + b| ≤ |a|+ |b|.

Applying this observation, we get that |a− b|+ |b− c| ≥ |a
:=0︷ ︸︸ ︷
−b + b−c| = |a− c|. Finally, note

that the addition of zero trick is common, and in fact quite useful in various contexts. ξ

• d2(x, y) =
√
|x1 − y1|2 + |x2 − y2|2. Let us indeed demonstrate the following.

0. d2(x, y) = 0 ⇐⇒ x = y. Starting with d2(x, y) = 0, we get

≥0︷ ︸︸ ︷√
|x1 − y1|2 + |x2 − y2|2 = 0 ⇐⇒

≥0︷ ︸︸ ︷
|x1 − y1|2 +

≥0︷ ︸︸ ︷
|x2 − y2|2 = 0 ⇐⇒ |x1 − y1| = 0 = |x2 − y2|

⇐⇒ x1 = y1 & x2 = y2

⇐⇒ x = y.

1. d2(x, y) = d2(y, x). Using | − x| = |x| once again, we get

d2(x, y) :=
√
|x1 − y1|2 + |x2 − y2|2 =

√
|y1 − x1|2 + |y2 − x2|2 := d2(y, x).

2. d2(x, y) + d2(y, z) ≥ d2(x, z). You might have already noticed that d2 is the Euclidean metric
in R2. Geometrically, d2(x, y) measures the line xy by means of the Pythagorean theorem.

d2(x, y)
|x1 − y1|

|x2 − y2|

d2(y, z) |y2 − z2|

|y1 − z1|

d2(x, z)

|x1 − z1|

|x2 − z2|

(x1, x2)

(y1, y2)

(z1, z2)

Triangle Inequality

We know from Euclidean geometry that d2(x, z) should not be greater than d2(x, y)+d2(y, z).
This, however, is not sufficient (!) for a complete solution. Instead, one must proceed as
follows.
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Lemma (2-∆). The triangle inequality d2(x, y) + d2(y, z) ≥ d2(x, z) holds for all x, y, z ∈ R2.

Proof. To show that d(x, y) =
√
|x1 − y1|2 + |x2 − y2|2 satisfies the triangle inequality, it

requires some effort. The Euclidean metric, is translation-invariant, meaning that

d2(x, y) = d2(x− z, y − z)

for x, y, z ∈ R2. This is not too difficult to check either. This reduces the statement to †

d2(x, y) + d2(y, z) ≥ d2(x, z) ⇐⇒ d2(x, 0) + d2(0, y) ≥ d2(x, y).

Geometrically, this is simply saying that we translate the triangle to the origin. The strategy
for this proof is to reduce the statement to one that we can easily prove. Let us proceed in
this sense, and write

d2(x, 0) + d2(0, y) ≥ d2(x, y) ⇐⇒
√

x2
1 + x2

2 +
√

y2
1 + y2

2 ≥
√

(x1 − y1)2 + (x2 − y2)2.

( · )2
⇐⇒(((((((((

x2
1 + x2

2 + y2
1 + y2

2 + 2
√

(x2
1 + x2

2)(y2
1 + y2

2) ≥ (x1 − y1)2 + (x2 − y2)2

= (((((((((
x2

1 + x2
2 + y2

1 + y2
2 − 2x1y1 − 2x2y2

× 1
2⇐⇒
√

(x2
1 + x2

2)(y2
1 + y2

2) ≥ −x1y1 − x2y2

( · )2
⇐⇒ �

��x2
1y2

1 + x2
1y2

2 + x2
2y2

1 +�
��x2

2y2
2 ≥�

��x2
1y2

1 +���x2
2y2

2 + 2x1y1x2y2

⇐⇒ x2
1y2

2 − 2x1y1x2y2 + x2
2y2

1 ≥ 0

This is great, because the expression on the left-hand side is precisely (x1y2 − x2y1)2, which
is indeed always greater or equal to zero. With this we conclude the argument. ξ

• d∞(x, y) := max
{
|x1 − y1|, |x2 − y2|

}
. We show once more that

0. d∞(x, y) = 0 ⇐⇒ x = y. Start with the definition,

d∞(x, y) = 0 ⇐⇒ : max
{ ≥0︷ ︸︸ ︷
|x1 − y1|, |x2 − y2|︸ ︷︷ ︸

≥0

}
= 0 ⇐⇒ |x1 − y1| = |x2 − y2| = 0 ⇐⇒ x = y.

1. d∞(x, y) = d∞(y, x). Simply write

d∞(x, y) := max
{
|x1 − y1|, |x2 − y2|

}
= max

{
|y1 − x1|, |y2 − x2|

}
=: d∞(y, x).

2. d∞(x, y) + d∞(y, z) ≥ d∞(x, z). Start with d∞(x, z) = max
{
|x1 − z1|, |x2 − z2|

}
and notice

that the 1−triangle inequality gives|x1 − z1| ≤ |x1 − y1|+ |y1 − z1|

|x2 − z2| ≤ |x2 − y2|+ |y2 − z2|
=⇒ d∞(x, z) ≤ d∞(x, y) + d∞(y, z). ξ

†To see this, notice that d2(x, y) = d2(x − y, 0) and d2(y, z) = d2(0, z − y) allow us to apply the reduced inequality to
get d2(x − y, z − y). This in turn equals d2(x, z) by translating with y.
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b) For all three cases j ∈ {1, 2,∞}, draw the set of points {x ∈ R2 : dj(x, 0) = 1}.

Drawing. The set of points is given by

x1

x2

d1(x, 0) = 1

x1

x2

d2(x, 0) = 1

x1

x2

d∞(x, 0) = 1

Metrics dj(x, 0) for |x| ≤ 1

In the case of d1(x, 0) = 1, we are considering |x1| + |x2| = 1. This is a linear relation. Taking care of
cases where signs of x1, x2 switch, it gives this rhombus-shaped drawing. As for the event d2(x, 0), we
have √

|x1 − 0|2 + |x2 − 0|2 =
√

x2
1 + x2

2 = 1,

that is the well-known equation of a circle. Finally, d∞(x, 0) = 1 gives max(|x1|, |x2|) = 1, which in turn
implies that |x1| or |x2| must be equal to one. In the case where both |x1| = |x2| = 1, we get the corners
of this square. ξ
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Exercise 2 We consider the matrix A =
(

2 1
1 2

)
.

a) Compute the eigenvalues and the corresponding eigenvectors of the matrix A.

Proof. Let λ be an eigenvalue of A. Then, λ is defined such that it satisfies Av⃗ = λv⃗. Proceed to obtain
the characteristic equation

Av⃗ − λv⃗ = 0 =⇒ (A− λ · I2×2
‡)v⃗ = 0 if=⇒

v⃗ ̸=0
det(A− λ · I2×2) = 0.

The matrix A− λ · I2×2 :=
(

2− λ 1
1 2− λ

)
gives a determinant of

det(A− λ · I2×2) := (2− λ)2 − 1 = 0 =⇒ 2− λ = ±1 =⇒ λ1,2 = 2± 1.

Next, the eigenvectors are obtained by solving the characteristic equation using the respective eigenvalue.

:=A−λ·I2×2︷ ︸︸ ︷(
2− λ 1

1 2− λ

)(
v1
v2

)
= 0 ⇐⇒

(
2− λ

1

)
· v1 +

(
1

2− λ

)
· v2 = 0 ⇐⇒

(
2− λ

1

)
· v1 =

(
−1

λ− 2

)
· v2

⇐⇒

v1 = v2

v2 = s ∈ R\{0}︸ ︷︷ ︸
(λ1=3)

&

(λ2=1)︷ ︸︸ ︷v1 = −v2

v2 = t ∈ R\{0}

⇐⇒ v⃗1 = s ·
(

1
1

)
& v⃗2 = t ·

(
−1
1

)

For the sake of this discussion, we choose the pair v⃗1 =
(1

1
)
, v⃗2 =

(−1
1
)
. Note, however, that any pair of

vectors v⃗1, v⃗2 of the prescribed form are perfectly suitable as eigenvectors of the matrix A. ξ

b) Draw the eigenvectors on the two-dimensional plane. Interpret geometrically how the eigenvectors
behave when the matrix A acts on them.

−5 5

5

v⃗1Av⃗2

3v⃗1

Av⃗1

v⃗2
x

y

Eigenvectors of A =
(2 1

1 2
)

v⃗1
v⃗2
Av⃗1
Av⃗2

Sketch. The matrix has the effect of scaling each eigen-
vector by its eigenvalue. As shown earlier, applying A to
v⃗1 scales it by its associated eigenvalue, λ1 = 3. The same
may be said about v⃗2, which is scaled by λ2 = 1, i.e. fixed
in place. ξ

‡I2×2 is the 2 × 2 identity matrix.
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Exercise 3 Compute all eigenvalues and eigenvectors of the matrix B =


3 1 −2
−2 0 4
1 1 0

 .

Computation. As with (iv.2), we get a characteristic equation det(B − λ · I3×3) = 0 for

det(B − λ · I) := det


3− λ 1 −2
−2 −λ 4
1 1 −λ

 = (3− λ) ·
∣∣∣∣∣−λ 4

1 −λ

∣∣∣∣∣−
∣∣∣∣∣−2 4

1 −λ

∣∣∣∣∣+ (−2) ·
∣∣∣∣∣−2 −λ

1 1

∣∣∣∣∣
= (3− λ)(λ2 − 4)− (2λ− 4) + (−2) · (−2 + λ)

= 3λ2 − 12− λ3
���+4λ���−2λ + 4 + 4���−2λ

= −λ3 + 3λ2 − 4︸ ︷︷ ︸
:=P (λ)

.

Setting P (λ) = 0 forces us to find the roots of a degree−3 polynomial. We know how to proceed in the
degree−2 case, so let us direct our focus on reducing P by one degree. The general strategy is as follows.

1. Guess a root λ1. Usually, -2, -1, 0, 1, 2 are good guesses.

2. Divide by (λ− λ1). The Fundamental Theorem of Algebra tell us we can express P in terms of its
roots,

P (λ) = (λ− λ1) · (λ− λ2) · (λ− λ3).

The quotient is accordingly guaranteed to be a degree−2 polynomial.

3. Apply the quadratic formula to obtain λ2, λ3.

With this, one proceeds to make an educated guess of λ1 = −1, which indeed gives P (λ1) = 0. Next,
divide P by (λ− λ1),§

− λ2 + 4λ− 4

λ + 1
)
− λ3 + 3λ2 − 4

λ3 + λ2

4λ2

− 4λ2 − 4λ

− 4λ− 4
4λ + 4

0

.

§Here, we use polynomial long division. Some people prefer synthetic division. Regardless of the method, our focus
here is on ideas and not techniques.
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The remaining eigenvalues are retrieved by setting

−(λ−2)2︷ ︸︸ ︷
−λ2 + 4λ− 4 to zero, giving λ = 2. We write

P (λ) = (λ + 1)(λ− 2)2 = 0 =⇒ λ1 = −1, λ2 = 2.

With λ2 counted twice as a root, we say that λ2 = 2 has multiplicity 2. Next the associated set of
eigenvectors is obtained by solving

A−λ·I︷ ︸︸ ︷
3− λ 1 −2
−2 −λ 4
1 1 −λ


v⃗︷ ︸︸ ︷
v1

v2

v3

 = 0 for v⃗ ̸= 0̃.

This will require some effort. Let us express this system in terms of an augmented matrix, and perform
row operations to obtain a solution.

3− λ 1 −2
−2 −λ 4
1 1 −λ




v1

v2

v3

 = 0 augmented⇐⇒
matrix


3− λ 1 −2 0
−2 −λ 4 0
1 1 −λ 0


The solution row is zero, therefore applying row operations would keep it zero. Proceed with Gaussian
elimination for each eigenvalue.¶


4 1 −2 0
−2 1 4 0
1 1 1 0


| 1

4
=


1 1

4
−1
2 0

−2 1 4 0
1 1 1 0

 ←−
2

+

←−−−−

−1

+

=


1 1

4
−1
2 0

0 3
2 3 0

0 3
4

3
2 0

 | 2
3 (λ1 = −1)

=


1 1

4
−1
2 0

0 1 2 0
0 3

4
3
2 0


←−

−1
4

+

←−−−−−

−3
4

+

=


1 0 −1

=
0

0 1 2 0
0 0 0 0



¶
=


1 0

=
1 0

0 1 −2 0
0 0 0 0

 ⇐⇒


v1 = v3

v2 = −2v3

v3 = s ∈ R

⇐⇒ v⃗1 = s ·


1
−2
1

 ̸= 0⃗.


1 1 −2 0
−2 −2 4 0
1 1 −2 0

 ←−
2

+

←−−−−

−1

+

=


1 1 −2

=
0

0 0 0 0
0 0 0 0

 ¶
=


1

=
−1 2 0

0 0 0 0
0 0 0 0

 (λ2 = 2)

⇐⇒


v1 = −v2 + 2v3

v2 = s ∈ R

v3 = t ∈ R

⇐⇒ v⃗2 = s ·


−1
1
0

+ t ·


2
0
1

 ̸= 0⃗.

¶The terms are subtracted to the other side of the equation.
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Next, some observations.

1. The eigenvector v1 lives in a one-dimensional space, whereas v2 lives in a two-dimensional space.
This is related to the multiplicity of each eigenvalue, especially that λ2 had multiplicity 2.

2. The action of A on every vector v in the respective eigenspace is exactly the same: it scales v by
the respective eigenvalue. ξ
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Exercise 1 Consider the linear system


d

dt
x(t) = −2x(t) + 4y(t)

d

dt
y(t) = −x(t)− 3y(t).

Determine the stability of the stationary solution (0, 0).

Theorem 1.26 (Section 1.7, Lecture 9). Let A be an arbitrary matrix. Then, the stationary point 0̃ is an
asymptotically stable solution of d

dt
x(t) = Ax(t) if and only if Re(λ) < 0 for all eigenvalues λ of A.∗

Remark.For more on this, see Theorem 1.26, Section 1.7, Lecture 9.

Proof. Let us start by representing our system of differential equations in the language of matrices.

d

dt

(
x

y

)
=

:=A︷ ︸︸ ︷(
−2 4
−1 −3

)(
x

y

)

To study the stability of our solutions, it is a good idea to study the eigenvalues of A.

det(A− λ · I) := det
(
−2− λ 4
−1 −3− λ

)
= (−2− λ)(−3− λ) + 4 = λ2 + 5λ + 10.

Setting the characteristic equation to zero, we get that

λ1,2 = 1
2(−5±

√
25− 4 · 10 · 1) = 1

2(−5± i
√

15).

It is now possible to perform an eigenvalue analysis. Note that Re(λ1), Re(λ2) are both negative,
indicating that 0̃ is asymptotically stable by Theorem 1.26. ξ

v.1
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Exercise 2 Prove that the function f : R3 → R defined by (x, y, z) 7→ x + 2y2 + 3z3 is continuous at
every point in R3.

Definition 2.4 (Section 2.1, Lectures 10 & 11). A function f : U → R (U ⊆ Rd open) is continuous at
a⃗ = (a1, a2, . . . , ad) ∈ Rd if

lim
x⃗→a⃗

f(x⃗) = f (⃗a).

One may reformulate the previous statement as

lim
n→∞

|f(x⃗n)− f (⃗a)| = 0

for any sequence {x⃗n}n∈N ⊆ Rd that converges to a⃗.†

Proof. In the same spirit of the lecture example‡, choose an arbitrary sequence (xn, yn, zn) in R3 that
converges to a point a⃗ := (x, y, z) as n tends to infinity. Formally, we write this as

|(xn, yn, zn)− (x, y, z)| −→
n→∞

0.

This implies that the sequence converges coordinate-wise, i.e.

|xn − x| −→
n→∞

0 |yn − y| −→
n→∞

0 |zn − z| −→
n→∞

0. (*)

Next, to show that f is continuous, we need to show that |f(xn, yn, zn)− f(x, y, z)| −→
n→∞

0. We do this
step-by-step. The next obvious move is to use the definition of f and write

|(xn + 2y2
n + 3z3

n)− (x + 2y2 + 3z2)| = |(xn − x) + 2(y2
n − y2) + 3(z3

n − z3)|.

The flavour of this proof (and similar ones) is to manipulate the above expression into something of the
form (*). We already have the expression for |xn − x|, however some diligence is due when dealing with
the other terms. To overcome this difficulty, we utilise the formulas for differences of two squares and
two cubes.

|(xn − x) + 2(y2
n − y2) + 3(z3

n − z3)| = |(xn − x) + 2(yn − y) (yn + y)︸ ︷︷ ︸
(!)

+3(zn − z) (z2
n + znz + z2)︸ ︷︷ ︸

(!!)

|

†See Page 3, Section 2.1, Lectures 10 & 11
‡Example 1, Section 2.1, Page 4, Lectures 10 and 11.
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Much better, but we still need to take care of (!), (!!) terms. Here, the trick is to add zero.

yn + y = (yn − y) + 2y (!)

z2
n + znz + z2 = (zn − z)2 + 3znz

= (zn − z)2 + 3(zn − z + z)z

= (zn − z)2 + 3(zn − z) · z + 3z2. (!!)

We manipulated both expressions by adding and subtracting y or z, and are now ready to take the limit.
This is because∣∣∣(xn + 2y2

n + 3z3
n)− (x + 2y2 + 3z2)

∣∣∣ =
∣∣∣(xn − x) + 2(y2

n − y) + 3(z3
n − z)

∣∣∣ =

=
∣∣∣(xn − x) + 2(yn − y) (yn + y)︸ ︷︷ ︸

(!)

+3(zn − z) (z2
n + znz + z2)︸ ︷︷ ︸

(!!)

∣∣∣
=
∣∣∣(xn − x) + 2(yn − y)(yn − y + 2y) + 3(zn − z)

[
(zn − z)2 + 3(zn − z) · z + 3z2

] ∣∣∣
≤ |xn − x|︸ ︷︷ ︸

−→
n→∞

0

+2 · |yn − y|2︸ ︷︷ ︸
−→

n→∞
0

+4y |yn − y|︸ ︷︷ ︸
−→

n→∞
0

+3 |zn − z|3︸ ︷︷ ︸
−→

n→∞
0

+9z · |zn − z|2︸ ︷︷ ︸
−→

n→∞
0

+9z2 · |zn − z|︸ ︷︷ ︸
−→

n→∞
0

(1−∆)

all go to zero! Therefore, if we bound

|(xn + 2y2
n + 3z3

n)− (x + 2y2 + 3z2)| ≤
n→∞

0

then the function is indeed continuous. To conclude, we utilised the assumption (*) as well as some
clever manipulations to show that

lim
n→∞

|f(x⃗n)− f (⃗a)| = 0

for arbitrarily chosen a⃗, {x⃗n}. ξ
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Exercise 3 Compute the partial derivatives of the following functions.

f. f : R2 → R defined by f(x, y) = x2y + ex sin(y)

Computation. We would like to compute the two possible partial derivatives, namely ∂f

∂x
and ∂f

∂y
. Let

us start with ∂f

∂x
. To proceed, we fix§ y and differentiate with respect to x only.

∂f

∂x
:= ∂

∂x

(
x2y + ex sin y

) linearity= ∂

∂x
x2y + ∂

∂x
ex sin y

fixing y= y · d

dx
x2 + sin y · d

dx
ex

= y · 2x + sin y · ex.

Notice that since y is fixed, it is insignificant when computing the partial derivative with respect of
x. The partial derivative becomes a total derivative on x only. With this clarified, we compute the
remaining partial derivative to get

∂f

∂y
:= ∂

∂y

(
x2y + ex sin y

) linearity= ∂

∂y
x2y + ∂

∂y
ex sin y

fixing x= x2 · d

dy
y + ex · d

dy
sin y

= x2 + ex cos y. ξ

g. g : R3 → R defined by g(x, y, z) = ln(x + y2 + z3).

Computation. Here we have three possible partial derivatives. As seen in the previous exercise, one
differentiates only with respect to the partial derivative, fixing all other remaining variables. Let us
immediately proceed with the computation.

To simplify¶, let t be one of the three variables x, y, z. Then, notice that

∂f

∂t
= ∂

∂t

[
ln(x + y2 + z3)

]
= 1

x + y2 + z3 ·
∂

∂t
(x + y2 + z3) (One-variable Chain Rule)

the computation simplifies to that of computing the partial derivatives of the inside function x+y2 +z3.

∂

∂x
(x + y2 + z3) = 1 ∂

∂y
(x + y2 + z3) = 2y

∂

∂z
(x + y2 + z3) = 3z2.

With this, we may write

∂f

∂x
= 1

x + y2 + z3 · 1
∂f

∂y
= 1

x + y2 + z3 · 2y
∂f

∂z
= 1

x + y2 + z3 · 3z2 ξ

§i.e. treat as constant
¶simplify=not write the same expression three times...
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h. h : R2 → R defined by h(x, y) = xy

x2 + y2 + 1 .

Computation. First, notice that h is symmetric with respect to its two inputs.‖ This is great, since it
allows us to compute the partial with respect to x, then interchange its variables to get the partial with
respect to y. For the sake of conciseness, let ∂xh denote the partial derivative of h with respect to x.

∂xh = ∂x

(
xy

x2 + y2 + 1

)
= y · ∂x

(
x

x2 + y2 + 1

)
= y · (x2 + y2 + 1) · (∂x x)−

[
∂x (x2 + y2 + 1)

]
· x

(x2 + y2 + 1)2

= y ·�
�x2 + y2 + 1− �2x2

(x2 + y2 + 1)2

= y · −x2 + y2 + 1
(x2 + y2 + 1)2 .

By symmetry of h, we get that (∂yh)(x, y) = (∂xh)(y, x) = x · −y2 + x2 + 1
(y2 + x2 + 1)2 . ξ

Exercise 3.1. Check that (∂yh)(x, y) = x · −y2 + x2 + 1
(y2 + x2 + 1)2 !

‖i.e. h(x, y) = h(y, x).
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Exercise 4 Let f : R2 → R be defined by (x, y) = ex sin(y) + y3 ln(x).

Theorem 2.12 (Section 2.4, Lectures 10 & 11). If f is differentiable at a⃗, then the directional derivatives
of f at a⃗ all exist, and are given by ∂u⃗f (⃗a) = ∇f (⃗a) · u⃗. ∗∗

Corollary (∇⃗f)(⃗a) points in the direction of steepest increase of f at a⃗. Moreover, the direction of no
increase is that perpendicular to the direction of (∇⃗f)(⃗a).

Proof. A quick justification for this is that the dot-product formula given by

∇f (⃗a) · u⃗ = |∇f (⃗a)||u⃗| cos θ(∇f(a⃗),u⃗).

The increase is clearly maximal for θ(∇f(a⃗),u⃗) = 0, when u⃗ points in the same direction as(∇⃗f)(⃗a). On
the other extreme, there is no increase in the case θ(∇f(a⃗),u⃗) = π

2 ; that is, when u⃗ ⊥ ∇f (⃗a). ξ

a) Determine the direction in which f experiences the largest change at the point (1, 1).

Solution. The question asks to compute the gradient of f at (1, 1). Simply, the gradient is given by

∇f(x, y) = (∂xf, ∂yf) = (ex sin y + y3

x
, ex cos y + 3y2 ln x).

Evaluating at (1, 1), it gives
∇f(1, 1) = (e sin(1) + 1, e cos 1). ξ

b) Determine the direction in which f does not change at the point (1, 1).

Solution. The direction of no change is that which is perpendicular to ∇f. The dot product formula
portrays this direction as that of the vector u⃗ for which

∇f(1, 1) · u⃗ = 0 ⇐⇒ (e sin(1) + 1, e cos 1) · u⃗ = 0

⇐⇒ (e sin(1) + 1) · u1 + (e cos 1) · u2 = 0. (*)

Then, it is then easy to see that the choices u1 = −e cos 1 and u2 = e sin(1) + 1 satisfy (*). Therefore,
the direction

u⃗ = (−e cos(1), e sin(1) + 1)

is that of no change at (1, 1). ξ

∗∗See Pages 13, 14, Section 2.4, Lectures 10 & 11.
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Exericse 1. Let f : R3 → R be given by f(x, y, t) = x2 + xy + y2 + tex and (x(t), y(t)) =
(et cos(t), et sin(t)). Compute d

dtf(x(t), y(t), t).

Solution. Let us present two methods to tackle this problem. For the sake of conciseness, we set x(t) = x

and y(t) = y in both methods.

Direct Computation

Solution. We are asked to compute the derivative with respect to t of

f(t)∗ := x2 + xy + y2 + tex. (*)

One may proceed by directly substituting the values for each function, and computing the expression

f(x, y, t) := [et cos t]2 + (et cos t)(et sin t) + [et sin t]2 + teet cos t

= e2t [cos2 t + sin2 t]︸ ︷︷ ︸
:=1

+e2t cos t sin t︸ ︷︷ ︸
:= 1

2 sin 2t

+teet cos t

= e2t[1 + 1
2 sin 2t] + teet cos t

which gives
d

dt
f(x, y, t) := d

dt

(
e2t[1 + 1

2 sin 2t] + teet cos t
)

= e2t cos 2t + e2t[2 + sin 2t] + eet cos t(1 + tet · (cos t− sin t))

= e2t(2 + cos 2t + sin 2t) + eet cos t(1 + tet · (cos t− sin t)) ξ

Using Chain Rule

Solution. Let us proceed differently, and apply the chain rule for the expression in (*).†

d

dt
f(t) := d

dt

(
x2 + xy + y2 + tex

)
=
(
2x · x′)+

(
x′y + xy′)+

(
2y · y′)+

(
ex + tex · x′)

= 2(x · x′ + y · y′) + (x′y + xy′) + ex(1 + t · x′).

If we can find expressions for x′ and y′, we are done.

x = et cos t =⇒ x′ = et(cos t− sin t)

y = et sin t =⇒ y′ = et(sin t + cos t)
∗The function f can be expressed in terms of t, since x, y are in essence functions of t.
†The product rule is used in the second term, with (xy)′ = x′ · y + y · x′.
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Then, compute term-by-term.

x · x′ = et cos t · et(cos t− sin t) = e2t(cos2 t− cos t sin t)

y · y′ = et sin t · et(sin t + cos t) = e2t(sin2 t + cos t sin t)

x′ · y = et(cos t− sin t) · et sin t = e2t(cos t sin t− sin2 t)

x · y′ = et cos t · et(sin t + cos t) = e2t(cos t sin t + cos2 t)

t · x′ = tet(cos t− sin t)

Using these computations, we write

(1) x′ · x + y′ · y = e2t(cos2 t + sin2 t
������������:0
− cos t sin t + cos t sin t)︸ ︷︷ ︸

=1

= e2t

(2) x′ · y + x · y′ = e2t(cos t sin t + cos2 t− sin2 t︸ ︷︷ ︸
:=cos 2t

+ cos t sin t) = e2t(2 cos t sin t︸ ︷︷ ︸
:=sin 2t

+ cos 2t) = e2t(sin 2t + cos 2t)

And the two equations (1), (2) in turn give

d

dt
f(x, y, t) := 2

(1)︷ ︸︸ ︷
(x · x′ + y · y′) +

(2)︷ ︸︸ ︷
(x′y + xy′) +ex(1 + t · x′)

= 2e2t + e2t(cos 2t + sin 2t) + eet cos t(1 + tet(cos t− sin t))

= e2t(2 + cos 2t + sin 2t) + eet cos t(1 + tet · (cos t− sin t)).

This conveniently matches the result previously attained. ξ
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Exericse 2. Find the second-order Taylor polynomial centered at (0, 0) of the function f : R2 → R
given by f(x, y) = exy sin(x + y).

Definition (Multi-Index Notation.)‡ Let α = (α1, α2, . . . , αd) be d−tuple of non-negative integers. Then,

1. |α| = α1 + α2 + · · ·+ αd Order or degree of α

2. α! = α1!α2! . . . αd! Factorial is defined coordinate−wise

3. ∂αf = ∂α1
1 ∂α2

2 . . . ∂αd
d f := ∂|α|f

∂α1x1∂α2x2 . . . ∂αdxd
Describes different partial derivatives

4.


v1

v2
...

vd



α

:=


vα1

1
vα2

2
...

vαd
d

 Coordinate−wise powers

For the sake of this discussion, let f : Rd → R be k + 1−times continuous on an open convex set S, and
choose a point a⃗ ∈ S.

Theorem 2.18 (Taylor’s Theorem in Several Variables). The kth Taylor expansion of f (⃗h) around a⃗ is
given by

f (⃗h + a⃗) ≈
∑

|α|≤k

∂αf (⃗a)
α! · h⃗α.

Lemma. The second-order Taylor expansion of f around a⃗ is given by

f (⃗a + h⃗) ≈ f (⃗a) +
d∑

j=1
∂jf (⃗a) · hj + 1

2

d∑
j,k=1

∂j,kf (⃗a) · hjhk.

Proof. As part of Section 2.7, an argument is provided in page 10 of Lectures 12, 13. Here, ∂j,k is
understood as taking the partial derivative with respect to the jth and kth variables. ξ

Solution. Since f has two variables x, y, we set d = 2. The vector h⃗ of variables is h⃗ = (x, y), and thus
the 2nd-order Taylor polynomial of f(x, y) around a⃗ = (0, 0) should be given by

f (⃗h)
(Lemma)
≈ f (⃗a) +

d∑
j=1

∂jf (⃗a) · hj + 1
2

2∑
j,k=1

∂j,kf (⃗a) · hjhk.

= f(0, 0) + ∂x1f(0, 0) · h1 + ∂x2f(0, 0) · h2+

+ 1
2

∂x1x1f(0, 0) · h1h1 + ∂x1x2f(0, 0) · h1h2 + ∂x2x1f(0, 0) · h2h1︸ ︷︷ ︸
both terms are equal

+∂x2x2f(0, 0) · h2h2


= f(0, 0) + ∂xf(0, 0) · x + ∂yf(0, 0) · y+

+ 1
2
(
∂xxf(0, 0) · x2 + 2 · ∂xyf(0, 0) · xy + ∂yyf(0, 0) · y2

)
. (*)

‡See section 2.7 of Lectures 12, 13.
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We compute the following list of derivatives of f(x, y) = exy sin(x + y), which will be the coefficients of
our Taylor polynomial.

f = exy sin(x + y).

∂xf = ∂xexy sin(x + y) = yexy sin(x + y) + exy cos(x + y) = exy [y sin(x + y) + cos(x + y)] .

∂yf = ∂yexy sin(x + y) = xexy sin(x + y) + exy cos(x + y) = exy [x sin(x + y) + cos(x + y)] .

∂xxf := ∂x

=∂xf︷ ︸︸ ︷
[exy [y sin(x + y) + cos(x + y)]]

= yexy(y sin(x + y) + cos(x + y)) + exy(y cos(x + y)− sin(x + y)).

∂yxf := ∂y

=∂xf︷ ︸︸ ︷
(exy [y sin(x + y) + cos(x + y)])

= xexy [y sin(x + y) + cos(x + y)] + exy [sin(x + y) + y cos(x + y)− sin(x + y)] .

∂yyf := ∂y

=∂yf︷ ︸︸ ︷
(exy [x sin(x + y) + cos(x + y)])

= xexy [x sin(x + y) + cos(x + y)] + exy(x cos(x + y)− sin(x + y)).

Quick Exercise. Notice that in the computation of ∂xyf(x, y), we considered ∂yx f(x, y). Can you check
that ∂xy f(x, y) yields the same result?

Next, compute these derivatives at the expansion point (x, y) = 0.

f(0, 0) = e0·0
������:0
sin(0 + 0) = 0.

∂xf(0, 0) = e0·0
[
������:0
0 sin(0 + 0) + cos(0 + 0)

]
= 1.

∂yf(0, 0) = e0·0
[
������:0
0 sin(0 + 0) + cos(0 + 0)

]
= 1

∂xxf(0, 0) =
����������������:0

0 ·0·0 (0 sin(0 + 0) + cos(0 + 0)) + e0·0(�������:0
0 cos(0 + 0)−������:0

sin(0 + 0)) = 0.

∂yxf(0, 0) =
����������������:0

0 ·0·0 [0 sin(0 + 0) + cos(0 + 0)] + e0·0
[
������:0
sin(0 + 0) +�������:0

0 cos(0 + 0)−������:0
sin(0 + 0)

]
= 0.

∂yyf(0, 0) =
����������������:0

0 ·0·0 [0 sin(0 + 0) + cos(0 + 0)] + e0·0(�������:0
0 cos(0 + 0)−������:0

sin(0 + 0) ) = 0.

It looks like only order-one terms survive. Equation (*) gives

f(x, y) ≈ ∂xf(0, 0) · x + ∂yf(0, 0) · y = x + y.

With this, we announce T 2
f (0, 0) = x + y to be the second-order Taylor polynomial of f, centered at

(0, 0). From this tedious computation follows a simple result. ξ
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Exercise 3 Let d ∈ N and f : Rd → R be a function that is continuously differentiable on an
open set containing the line segment L between two points a⃗, b⃗ ∈ Rd. Prove the Mean Value Theorem for
Several Variables, which states that: There exists a point c⃗ on L such that f (⃗b)−f (⃗a) = ∇f(c⃗)· (⃗b− a⃗).

1. Define a function of a single variable g : [0, 1]→ R by g(t) = f (⃗a + t(⃗b− a⃗)).

Solution. First, consider the line segment L connecting a⃗ and b⃗. For simplicitly, think of the case of
d = 2.

L
b⃗a⃗

It is interesting to note that L is parameterized (described) by a⃗ + t(⃗b− a⃗). For every point l ∈ L, there
is a unique t for which l = a⃗ + t(⃗b− a⃗). To see this, notice that the vector b⃗− a⃗ gives the direction, and
a⃗ gives the starting point.

We may now think of g as mapping to L first, then L mapping to R via f. This is perfectly suitable,
since f : L→ R is given to be continuously differentiable on L. Therefore, the function

g(t) := f (⃗a + t(⃗b− a⃗))

is continuously differentiable on [0, 1]. ξ

2. Apply the mean value theorem in One Variable to the function g.

Solution. Perhaps it is a good idea to first state the theorem,

Theorem (Mean-value). Let f : [a, b] → R be a continuous function on the closed interval [a, b], differ-
entiable on the open interval (a, b). Then, there exists a c ∈ (a, b) for which

f ′(c) = f(b)− f(a)
b− a

.

To apply the mean value theorem on g : [0, 1] → R, one must verify that g is continuous on [0, 1] and
differentiable on (0, 1). This has already been checked in (1.), therefore we may safely find c ∈ (0, 1) for
which

g′(c) = g(1)− g(0)
1− 0 = g(1)− g(0) = f (⃗b)− f (⃗a). (a)

We explore the consequences of this in the next sub-question. ξ
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3. Compute d
dtg(t) using the chain rule and express it in terms of ∇f . Use this to conclude the proof

by identifying a point c⃗ that satisfies the theorem.

Proof. Applying the chain rule, the derivative of g(t) := f (⃗a + t(⃗b− a⃗)) is given by

g′(t) =
[
∇f (⃗a + t(⃗b− a⃗))

]
·
[
(⃗a + t(⃗b− a⃗))

]′
︸ ︷︷ ︸

=b⃗−a⃗

= ∇f (⃗a + t(⃗b− a⃗)) · (⃗b− a⃗). (b)

Combining this with the result from (2.), we may find some some c ∈ (a, b) for which

f (⃗b)− f (⃗a) (a)= g′(c) (b)= ∇f(c⃗) · (⃗b− a⃗)

where c⃗ = a + c · (⃗b− a⃗). As argued in (1.), this vector should successfully land on L. ξ
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Exericse 4.§ Let f : R2 → R be given by f(0, 0) = 0 and f(x, y) = xy(x2−y2)
(x2+y2) if (x, y) ̸= (0, 0).

a) Check if f is twice partially differentiable and if the second partial derivatives are continuous on
R2 \ {(0, 0)}.

Check. First, let (x, y) ̸= (0, 0). It should be clear that the numerator of f is a product of continuous
functions, which is continuous. The only real obstacle is zeroes¶ of the denominator, but those have
already been excluded. The quotient is therefore continuous, and one may comfortably proceed to
compute the first partial derivatives of f.

∂xf = ∂x

(
xy(x2 − y2)

x2 + y2

)
=

(x2 + y2) · ∂x

[
xy(x2 − y2)

]
− xy(x2 − y2) · ∂x

[
x2 + y2

]
(x2 + y2)2

=
(x2 + y2) ·

[
y(x2 − y2) + xy(2x)

]
− xy(x2 − y2) ·

[
2x
]

(x2 + y2)2

= x4y + 4x2y3 − y5

(x2 + y2)2 . (a)

∂yf = ∂y

(
xy(x2 − y2)

x2 + y2

)
=

(x2 + y2) · ∂y

[
xy(x2 − y2)

]
− xy(x2 − y2) · ∂y

[
x2 + y2

]
(x2 + y2)2

=
(x2 + y2) ·

[
x(x2 − y2) + xy(−2y)

]
− xy(x2 − y2) ·

[
2y
]

(x2 + y2)2

= x5 − 4x3y2 − xy4

(x2 + y2)2 . (b)

By the same argument, we see that the numerators of ∂xf, ∂yf are continuous, and that zeroes of their
denominator are excluded. Therefore, both partials exist and are continuous. Finally, while one may
proceed to compute the second−partial derivatives then check for continuity, it is sufficient to note that

1. ∂xf, ∂yf are quotients of polynomials, which are differentiable functions,

2. the denominator (x2 + y2)2 of both partials does not vanish‖ on R2\{(0, 0)}.

Then one concludes that all second−partial deirvatives exist and are continuous on R2\{(0, 0)}. ξ

b) Show that f is twice partially differentiable at (0, 0).

§The exercise had mistakenly defined f as f(x, y) = xy
(x2−y2)(x2+y2) . This is problematic, since the given function is not

twice partially differentiable at (0, 0). We apologise for this inconvenience.
¶The zeroes of a function g are inputs (x, y) satisfying g(x, y) = 0.
‖is never zero
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Definition 2.7 (Partial Derivative).∗∗ Define f : U → R on an open subset U ⊆ Rd. The limit

∂f

∂xj
= lim

h→0

f(x1, . . . , xj−1, xj + h, xj+1, . . . , xd)− f(x1, . . . , xd)
h

if exists, is the partial derivative of f with respect to xj . This is effectively taking the limit in one
variable, that is xj , with all other variables held constant.

Proof. To compute the partial derivatives at (0, 0), some care is required. For this, we utilise the limit
definition of the partial derivative.

∂xf(0, 0) := lim
h→0

f(h, 0)− f(0, 0)
h

, ∂yf(0, 0, ) := lim
h→0

f(0, h)− f(0, 0)
h

.

Next, f(h, 0) = f(0, 0) = 0 gives us that both partials exist and evaluate to zero. The second-order
partial derivatives give

∂2
xf(0, 0) := lim

h→0

∂xf(h, 0)−�����: 0
∂xf(0, 0)

h
= ∂xf(h, 0)

h

 ∂y∂xf(0, 0) := lim
h→0

∂xf(0, h)−�����: 0
∂xf(0, 0)

h
= ∂xf(0, h)

h


∂x∂yf(0, 0) := lim

h→0

∂yf(h, 0)−�����: 0
∂yf(0, 0)

h
= ∂yf(h, 0)

h

 ∂2
yf(0, 0) := lim

h→0

∂yf(0, h)−�����: 0
∂yf(0, 0)

h
= ∂yf(0, h)

h


by definition. This reduces the task to computing the four numerators above. Since both (h, 0) and
(0, h) are non-zero, we may utilise the computations (a), (b) to get

∂xf(h, 0) =
����: 0
h4 · 0 +�����: 0

4h2 · 03 −���
0

05

(h2 + 02)2 = 0 ∂xf(0, h) =
����: 0
04 · h +�����: 0

4 · 02 · h3 − h5

(02 + h2)2 = −h

∂yf(h, 0) = h5 −�����: 0
4 · h3 · 02 −����: 0

h · 04

(h2 + 02)2 = h ∂yf(0, h) = ���
0

05 −�����: 0
4 · 03h2 −����: 0

0 · h4

(02 + h2)2 = 0

Then
∂2

xf(0, 0) := lim
h→0

�����: 0
∂xf(h, 0)

h

 = 0 ∂y∂xf(0, 0) := lim
h→0


=−h︷ ︸︸ ︷

∂xf(0, h)
h

 = −1

∂x∂yf(0, 0) := lim
h→0


=h︷ ︸︸ ︷

∂yf(h, 0)
h

 = 1 ∂2
yf(0, 0) := lim

h→0

�����: 0
∂yf(0, h)

h

 = 0

all second-order partial derivatives exist, and f must be twice−partially differentiable at (0, 0). ξ

Remark. We find it indeed useful (and perhaps necessary) that one exposes themselves to the limit
definition of the derivative.

∗∗See Section 2.2.1, Lectures 10 & 11
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c) Compute ∂2f(x,y)
∂x∂y and ∂2f(x,y)

∂y∂x at (x, y) = (0, 0). Are these findings in contradiction to Schwartz’s
theorem?

Define f : U → R on an open subset U ⊆ Rd.

Theorem 2.14 (Clairaut–Schwartz). Let f be continuous on U , and suppose that all its second-order
partial derivatives exist and are continuous on U . Then,

∂2f

∂xi∂xj
= ∂2f

∂xj∂xi

for all i, j ∈ {1, . . . , d}.

Proof. From vi.4.b, we see that the mixed derivatives

∂xy(0, 0)f = 1 ̸= −1 = ∂yxf(0, 0)

are not equal. This, however, is not in contradiction to Schwartz’s theorem, for two reasons:

• All partial derivatives are discontinuous at (x, y) = (0, 0), failing the continuity requirement for
Schwartz’s theorem to hold;

• if Schwartz’s theorem were to be incorrect, it is highly unlikely†† that we disprove it in this exercise
sheet. ξ

††In fact, with probability zero. . .

vi.9
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Exercise 1 Determine whether the critical points of the following functions are local maxima, local
minima or saddle points.

Critical Point Analysis For the sake of this discussion, assume f : U → Rd to be defined on an open
subset U of Rd, and that it is twice-differentiable. A point a⃗ ∈ Rd for which ∇⃗f (⃗a) = 0 is said to be a
critical point. The following theorem is pivotal to our discussion.

Proposition 2.22 (Critical Point Test).∗ If f has a local maximum or minimum at a⃗, then ∇f (⃗a) = 0⃗.

It gives us a way to check whether such a a⃗ exists. If it does, then it will satisfy this criterion. The
following step is to determine whether a⃗ is an extremum of f . Luckily, we have

Definition 2.20 (Hessian). The Hessian of f at a⃗ is defined as

H = Hf (⃗a) :=


∂2

x1f (⃗a) ∂x1∂x2f (⃗a) . . . ∂x1∂xd
f (⃗a)

∂x2∂x1f (⃗a) ∂2
x2f (⃗a) . . . ∂x2∂xd

f (⃗a)
... . . .

∂xd
∂x1f (⃗a) . . . . . . ∂2

xd
f (⃗a)

 .

It stores all second-order partial derivatives of f at a⃗.

Theorem 2.23 (Extrema Test). Let a⃗ ∈ U be a critical point for which ∇f (⃗a) = 0. If λ1, λ2, . . . , λd are
the eigenvalues of H = Hf (⃗a), then

• λi > 0 for all i =⇒ a⃗ is a local minimum.

• λi < 0 for all i =⇒ a⃗ is a local maximum.

• λi > 0 and λj < 0 for some indices i, j =⇒ a⃗ is a saddle point.

The test is inconclusive otherwise.

To find local extrema of f, the recipe therefore goes as follows:

1. find all critical points of f using ∇⃗ · f (⃗a) = 0;

2. compute Hf (⃗a) for all critical points a⃗;

3. compute the eigenvalues of Hf (⃗a);

4. utilise (Theorem 2.23) to reach a conclusion on a⃗.

With this, let us now start discussing the problems.

∗Seek Page 2, Lectures 14 & 15.
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f . f : R2 → R given by f(x, y) = x3 − 3x + y2.

Solution. To obtain all critical points a⃗, we set ∇⃗f(x⃗) = 0̃,

(3x2 − 3, 2y) = (∂xf, ∂yf) =: ∇⃗f(x⃗) = (0, 0) ⇐⇒ x ∈ {−1, 1} and y = 0

⇐⇒ a⃗ ∈ {(−1, 0), (1, 0)}

With the initial computation (∂xf, ∂yf) = (3x2−3, 2y) in hand, we proceed with computing the Hessian
(and consequently the characteristic equation).

H := Hf (x, y) :=
(

∂x(∂xf) ∂x(∂yf)
∂y(∂xf) ∂y(∂yf)

)
=
(

6x 0
0 2

)
=⇒ det(H − λ · I) = (6x− λ)(2− λ)

=⇒ λ ∈ {6x, 2}︸ ︷︷ ︸
:=Λ(x,y)

for det(H − λ · I) = 0.

To find the eigenvalues, one simply plugs-in a⃗ into the set Λ(x, y) of eigenvalues, to get that

Λ(−1, 0) = {−6, 2} =⇒ (−1, 0) is a saddle;

Λ(1, 0) = {6, 2} =⇒ (1, 0) is a local minimum;

by (2.23). ξ

g. g : R2 → R given by g(x, y) = x4 − y6.

Solution. Let us find the critical points of g.

(4x3,−6y5) = (∂xg, ∂yg) =: ∇⃗g(x⃗) = (0, 0) ⇐⇒ a⃗ = (0, 0).

Computing the Hessian gives

H := Hg(x, y) :=
(

∂x(∂xf) ∂x(∂yf)
∂y(∂xf) ∂y(∂yf)

)
=⇒ H =

(
12x2 0

0 −30y4

)

=⇒ det(H − λ · I) = (12x2 − λ)(30y4 − λ) =⇒ λ ∈ {12x2,−30y4}︸ ︷︷ ︸
:=Λ(x,y)

for det(H − λ · I) = 0.

Then, plugging-in a⃗ into the set of eigenvalues, Λ(0, 0) = {0} implies that the test is inconclusive. Note,
however, that while g does increase as we move away from (0, 0) along the x−axis, g decreases as we move
away along the y−axis. With this, we may conclude that (0, 0) is neither a maximum nor a minimum,
and must therefore be a saddle point. ξ
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h. h : R3 → R given by h(x, y, z) = e−x2−y2 + z3 − 3z.

Solution. Computing ∇⃗h(x⃗) gives

(−2xe−x2−y2
,−2ye−x2−y2

, 3z2 − 3) =: (∂xh, ∂yh, ∂zh) = 0 ⇐⇒ x = y = 0 and z ∈ {−1, 1}

⇐⇒ a⃗ ∈ {(0, 0,−1), (0, 0, 1)}.

The Hessian is therefore given by

H := Hh(x, y, z) :=


∂x(∂xf) ∂x(∂yf) ∂x(∂zf)
∂y(∂xf) ∂y(∂yf) ∂y(∂zf)
∂z(∂xf) ∂z(∂yf) ∂z(∂zf)

 =


e−x2−y2 · (4x2 − 2) 4xy · e−x2−y2 0

4xy · e−x2−y2
e−x2−y2 · (4y2 − 2) 0

0 0 6z



=⇒ Hh(0, 0, z) =


−2 0 0
0 −2 0
0 0 6z

 =⇒ det(Hh(0, 0, z)− λ · I) =

∣∣∣∣∣∣∣∣
−2− λ 0 0

0 −2− λ 0
0 0 6z − λ

∣∣∣∣∣∣∣∣
= (2 + λ)2 · (6z − λ).

The set of eigenvalues Λ(0, 0, z) = {−2, 6z} is obtained by setting the latter expression to zero. Then,
computing Λ(⃗a) gives

Λ(0, 0, 1) = {−2, 6} =⇒ (0, 0, 1) is a saddle point

Λ(0, 0,−1) = {−2,−6} =⇒ (0, 0,−1) is a local maximum

by (2.23). ξ
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Exercise 2 Find the extreme values of f(x, y) = x3 − x + y2 − 2y on the closed triangular region
with vertices at (−1, 0), (1, 0), and (0, 2).

Theorem 2.24 (Extreme Value Theorem). If f is continuous on a closed, bounsed set S ⊆ Rd, then f

attains a minimum or a maximum on S.

A recipe to find extreme values on a closed, bounded set S is the following.†

1. Find all critical points of f on S.

2. Find candidates for extreme values on the boundary of S.

3. Pick the smallest and largest values of f from (1), (2)

Solution. Let us attempt to find all critical points of f. Next, set

∇⃗f (⃗a) = 0 ⇐⇒

(∂xf,∂yf)︷ ︸︸ ︷
(3x2 − 1, 2y − 2) = 0 ⇐⇒ x = ± 1√

3
and y = 1

⇐⇒ a⃗ ∈ {( 1√
3

, 1), (−1√
3

, 1)}.

These points do not lie in the triangle.‡ This, however, is not an issue. The recipe recommends that we
resort to the triangle’s boundary in search for extrema.

x

y

(−1, 0) (1, 0)

(0, 2)

(
1√
3 , 1
)(

− 1√
3 , 1
)

Critical Points on ∆

The idea is to parameterise f by the equations of each side. Every blue point belongs to either

1. x ∈ [−1, 1], y1 = 0
base

2. x ∈ [−1, 0], y2 = 2x + 2
left-hand-side

3. x ∈ [0, 1], y3 = −2x + 2
right-hand-side

This in turn induces three forms of f(x, y) = x3 − x + y2 − 2y, one for each possible parameterisation.

†Page 8, Lectures 14 & 15.
‡To see this, notice that the line connecting (1, 0), (0, 2) has slope −2 with y−intercept 2, giving y = −2x+2. All points

above this line satisfy y > −2x + 2, which is true in the case of ( 1√
3 , 1). The same may be said for ( −1√

3 , 1) by the symmetric
setup.
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f1(x) := f(x)
∣∣∣
y=0

= x3 − x + 02 − 2 · 0 = x3 − x (1)

f2(x) := f(x)
∣∣∣
y=2x+2

= x3 − x + (2x + 2)2 − 2(2x + 2) = x3 + 4x2 + 3x (2)

f3(x) := f(x)
∣∣∣
y=−2x+2

= x3 − x + (−2x + 2)2 − 2(−2x + 2) = x3 + 4x2 − 5x. (3)

The next step is to optimize in the variable x. This should be a simple exercise; one only needs to set
the derivative to 0 to find the critical points.

d

dx
f1(x) = 0 ⇐⇒ 3x2 − 1 = 0 ⇐⇒ x ∈

{−1√
3

,
1√
3

}
(x ∈ [−1, 1])

d

dx
f2(x) = 0 ⇐⇒ 3x2 + 8x + 3 = 0 ⇐⇒ x ∈

{
−4−

√
7

3 ,
−4 +

√
7

3

}
(x ∈ [−1, 0])

d

dx
f3(x) = 0 ⇐⇒ 3x2 + 8x− 5 = 0 ⇐⇒ x ∈

{
−4−

√
31

3 ,
−4 +

√
31

3

}
(x ∈ [0, 1])

We eliminate x = −4+
√

7
3 , −4−

√
31

3 as they do not fall within their respective intervals. One is then left
with the following,

C =


(−1√

3
, 0
)

,

( 1√
3

, 0
)

,

−4 +
√

7
3 ,

:=y2︷ ︸︸ ︷
2 · −4 +

√
7

3 − 2

 ,

−4 +
√

31
3 ,−2 · −4 +

√
31

3 + 2︸ ︷︷ ︸
:=y3


 .

These are all the critical pairs (x, y). Let us not forget to include the endpoints of the triangle,

C =


(−1√

3
, 0
)

,

( 1√
3

, 0
)

,

(
−4 +

√
7

3 ,
−14 + 2

√
7

3

)
,

(
−4 +

√
31

3 ,
14− 2

√
31

3

)
,

Triangle Endpoints︷ ︸︸ ︷
(−1, 0), (1, 0), (0, 2)

 .

In evaluating f(c⃗) for c⃗ ∈ C, we find that f

(
−4 +

√
31

3 ,
14− 2

√
31

3

)
= 308− 62

√
31

27 is an absolute

minimum, whereas f

(−1√
3

, 0
)

= 2
√

3
9 is an absolute maximum on the closed, bounded triangle. ξ

x

y

(
− 1√

3
, 0
)

(
−4 +

√
31

3 ,
14− 2

√
31

3

)
Maxima, Minima of f on ∆
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Exercise 3 Use the Lagrange multiplier method to solve Exercise 1 and Exercise 2 of the lab sheet
Optimization problems 1.

The Lagrangian Method is concerned with finding an extremum of f(x, y) ∈ C1 given a constraint
g(x, y) = 0. It formalises a key idea from (v.4), namely that the gradients of f, g must be parallel to
obtain the direction of steepest change. Formally, if a⃗ is an extremum, then there exists a scalar λ for
which

∇⃗f (⃗a) = λ∇⃗g(⃗a).

Definition (Lagrangian). Let f : R2 → R be differentiable. The Lagrangian of f is defined by

L(x, y, λ) = f(x, y)− λ · g(x, y)

where λ is the Lagrange multiplier, and g(x, y) is a constraint function.

Then, one only needs to set ∇⃗L(x, y, λ) = 0 to

1. enforce the parallel gradient condition, ∇⃗L := ∇⃗f − λ · ∇⃗g = 0 ⇐⇒ ∇⃗f = λ · ∇⃗g

2. satisfy the constraint g(x, y) = 0, since ∂λL := −g(x, y) = 0 ⇐⇒ g(x, y) = 0.

The Lagrangian naturally encodes all the information we require of the extreme value problem, and
simplifies it to a single critical point analysis problem.§

1. A farmer has 100 meter of fencing to enclose a rectangular garden on three sides (one side is along
a river and does not need a fence). What are the best dimensions to maximize the area of the garden?

Solution. The task is to maximize the area A(x, y) = xy with the constraint x + 2y = 100. The factor
of 1 next to x accounts for the missing side along the river. This setup induces a Lagrangian given by

L(x, y, λ) = xy − λ(x + 2y − 100)

where the constraint is set to zero, and weighted by the Lagrangian multiplier λ. Proceed to compute
critical points of L,

:=(∂xL,∂yL,∂λL)︷ ︸︸ ︷
∇⃗L(x, y, λ) = (0, 0, 0) ⇐⇒ (y − λ, x− 2λ,−x− 2y + 100) = (0, 0, 0)

⇐⇒ y = λ, x = 2λ, x + 2y = 100

⇐⇒ 4λ = 100 ⇐⇒ λ = 25

⇐⇒ x = 50, y = 25.

The dimensions are thus 50m× 25m, with the 50−meter side placed parallel to the river. ξ

§As examples, please seek Pages 11-13 of Lectures 14 & 15. There you may find out more on the Lagrange Method,
and more generally on the Extremum with Constraints problem.
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2. A company manufactures cylindrical cans using a sheet of metal. The company must design a can
that has a fixed volume of V cubic centimeters. The cost of the metal required to make the can depends
on the total surface area, as metal is used for the sides, top, and bottom of the can. Determine the values
of the radius r and height h that minimize the amount of metal used, and therefore minimize the cost,
while ensuring the can has the required volume.

Solution. A cylindrical can has surface area S(r, h) = 2πr2 + 2πr · h. The task is to minimize S(r, h),
constrained with the volume V = πr2h of the cylinder. The Lagrangian is therefore given by

L(r, h, λ) = 2πr2 + 2πr · h− λ(V − πr2 · h)

The critical values are given by

∇⃗L(r, h, λ) = (0, 0, 0) ⇐⇒ (4πr + 2πh− λ · 2πrh, 2πr − λ · πr2,−V + πr2 · h) = (0, 0, 0)

⇐⇒


4πr + 2πh = λ · 2πrh (a)

2πr = λ · πr2 (b)

V = πr2 · h (c)

We will solve this by substitution, starting with (b).

2πr = λ · πr2 × 1
rπ⇐⇒ 2 = λ · r

× 1
r⇐⇒ λ = 2

r
. (1)

Substituting in (a) gives

4πr + 2πh = λ · 2πrh
× 1

2π⇐⇒ 2r + h = λ · rh
(1)⇐⇒ 2r + h = 2

�r
· �rh

−h⇐⇒ 2r = h. (2)

Finally, (c) tells us that

V = πr2 · h (2)⇐⇒ V = πr2 · (2r)
× 1

2π⇐⇒ V

2π
= r3

3
√

(·)
⇐⇒ r = 3

√
V

2π
.

Given a fixed volume V, we set r = 3

√
V

2π
and h = 2r = 3

√
4V

π
to minimize the surface area. ξ
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Exercise 4 Consider the curve defined by the equation x2
1 + x2

2 = 3. Find the point on this curve that
is closest to the point (3, 0) by using the Lagrange multiplier method.
Hint: Find first the function that describes the distance between points in the plane and the point (3, 0).

Solution. The distance function in R2 has to be the Euclidean metric, given by

d2(x, y) =
√
|x1 − y1|2 + |x2 − y2|2.

For y = (3, 0), this would become

d2(x, y) =
√

(x1 − 3)2 + x2
2 =

√
x2

1 + x2
2 − 6x1 + 9.

Interlude. Things get even more interesting if we choose x : x2
1 + x2

2 = 3 on the curve, as the distance
function simplifies to

d2(x, y) =
√

x2
1 + x2

2︸ ︷︷ ︸
:=3

−6x1 + 9 =
√

6 ·
√

2− x1.

This is minimized upon maximizing x1. With freedom to choose x1 ∈ [0,
√

3], set x1 =
√

3 and x2 = 0.

Then (
√

3, 0) is the closest point to (3, 0). The exercise, however, asks us to specifically use the method
of Lagrange multipliers, therefore we will not proceed in this fashion.

Minimizing d2(x, y) is equivalent to minimizing its square. Accordingly, describe the Lagrangian by

L(x, y, λ) = x2
1 + x2

2 − 6x1 + 9− λ(x2
1 + x2

2 − 3).

Its critical points may be obtained as follows,

∇⃗L(x, y, λ) = (0, 0, 0) ⇐⇒ (0, 0, 0) = (2x1 − 6− 2λ · x1, 2x2 − λ · 2x2,−x2
1 − x2

2 + 3)

= (2x1(1− λ)− 6, 2x2(1− λ), x2
1 + x2

2 − 3)

⇐⇒


2x1 · (1− λ) = 6 (a)

x2 · (1− λ) = 0 (b)

x2
1 + x2

2 − 3 = 0 (c)

(∗)⇐⇒ (1− λ) ̸= 0
(b)⇐⇒ x2 = 0
(c)⇐⇒ x1 =

√
3

The iff statement (*) is true, as (1 − λ) = 0 would imply that (a), (b) must both evaluate to zero, a
contradiction. The result x = (

√
3, 0) is consistent with that obtained during the earlier interlude. ξ
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Exercise 1 Write the following problem in the standard form of linear programming.

Maximize
Z = 2x1 + x2 − 3x3

subject to the constraints



x1 + x2 ≤ 40

4x1 + x2 ≤ 100

x1 + x2 + x3 ≥ 20

x1, x2 ≥ 0
and no further restrictions on the sign of x3.

Definition 2.26. Let m, n ∈ N with n ≥ m. A linear programming problem is in standard form if written as

Minimize Z = cT x subject to constraints Ax = b and x ≥ 0.

Here, x, c ∈ Rn, A ∈ Rm×n, b ∈ Rm.∗

Solution. We give a recipe† to bring any linear programming problem to a standard form.

1. Convert to a minimization problem. As per (2.26), we would like to turn our maximization problem
into a minimization problem. This is simple, as

Maximize Z = 2x1 + x2 − 3x3 ⇐⇒ Minimize Z̃ = −2x1 − x2 + 3x3.

2. Handle unrestricted variables. Notice that x3 can take positive or negative values. For this, write
x3 = x+

3 −x−
3 with x+

3 , x−
3 ≥ 0. From now on, we minimize Z̃ = −2x1−x2 +3x+

3 −3x−
3 and replace

x3 with the introduced pair of variables.

3. Introduce slack variables to turn inequality constraints into equality constraints. For ≤, we would
like to add a positive amount to make it an equality; similarly for ≥. This is best demonstrated
by an example.

Minimize
Z̃ = −2x1 − x2 + 3x+

3 − 3x−
3

subject to constraints



x1 + x2 ≤ 40 ⇐⇒ x1 + x2 + s1 = 40

4x1 + x2 ≤ 100 ⇐⇒ 4x1 + x2 + s2 = 100

x1 + x2 + x+
3 − x−

3 ≥ 20 ⇐⇒ x1 + x2 + x+
3 − x−

3 − s3 = 20

x1, x2 ≥ 0 ⇐⇒ x1, x2, x+
3 , x−

3 , s1, s2, s3 ≥ 0

. ξ

∗Page 4, Section 2.5, Lectures 16 & 17.
†Page 5, Section 2.5, Lectures 16 & 17.
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Exercise 2
Maximize

Z = x1 + 2x2

subject to constraints


x1 + 3x2 ≤ 8

x1 + x2 ≤ 4

x1, x2 ≥ 0

.

a) Solve the problem graphically.

Sketch.

−1 −0.5 0.5 1 1.5 2 2.5 3 3.5 4 4.5

−1

1

2

3

4

5

(2,2)

x1

x2

x1 + 3x2 ≤ 8
x1 + x2 ≤ 4

Z = x1 + 2x2 = 6
Feasible Region

ξ

b) Write the problem in the standard form of linear programming.

Solution. As shown earlier in (viii.1), we apply the recipe.

1. Convert into a minimization problem. Maximize Z = x1 + 2x2 ⇐⇒ Minimize Z̃ = −x1 − 2x2.

2. Handle unrestricted variables. This is not an issue here, all variables are restricted.

3. Introduce slack variables. This gives rise to the following.

Minimize Z̃ = −x1 − 2x2 subject to constraints


x1 + 3x2 + s1 = 8

x1 + x2 + s2 = 4

x1, x2, s1, s2 ≥ 0

. ξ
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c) Solve the problem with the simplex method.

Solution. We start by initialising our simplex tableau. This is done using coefficients of the linear
constrained system, written in standard form. Coefficients of the objective function Z̃ = −x1 − x2 − 0 ·
s1 − 0 · s2 are entered in the lower-most row, with the right-most entry set to 0.


x1 + 3x2 + s1 = 8

x1 + x2 + s2 = 4

x1, x2, s1, s2 ≥ 0

⇐⇒

Basis x1 x2 s1 s2 RHS
1 3 1 0 8
1 1 0 1 4

Z̃ −1 −2 0 0 0

Given 4 variables and 2 constraints, one would like to choose 2 basic variables to form a basis. We choose
s1, s2 for the basis, since (x1, x2, s1, s2) = (0, 0, 8, 4) is a feasible‡ solution. It is, however, suboptimal,
and a most−suitable solution shall be obtained upon termination of the simplex algorithm.

1. Entering Variable. Choose is the most-negative coefficient in row Z̃.

↪→ This is x2 with value −2.

2. Minimal Row. Choose the row with a minimum positive ratio between RHS and the coefficient in
the entering variable column.
↪→ The first row has a ratio of (RHS)1

(x2)1
= 8÷ 3 , whereas the second row has one of (RHS)2

(x2)2
= 4÷ 1.

3. Leaving Variable. In the basic solution matrix, choose the pivot variable in the minimal row.
↪→ The basic solution matrix is initialised with columns s1, s2. The variable s1 holds the pivot in
the first row, and is thus leaving.

The basic solution matrix must always form a permutation of the identity matrix. A new pivot is
therefore initialised at the first entry of column x2.

Basis x1 x2 s1 s2 RHS
s1 1 3 1 0 8 ×1

3

−1
2

s2 1 1 0 1 4
Z̃ −1 −2 0 0 0

⇐⇒

Basis x1 x2 s1 s2 RHS
x2

1
3 1 1

3 0 8
3

s2
2
3 0 −1

3 1 4
3

Z̃ −1
3 0 2

3 0 16
3

Notice that x2 has entered for s1 in the basis, in the sense that our tableau replaces s1 with x2. Let us
apply the same iteration once again.

1. Entering Variable. The x1−column has the only negative coefficient (−1
3).

2. Minimal Row. The second row has a ratio of (RHS)1
(x1)1

= 4
3 ÷

2
3 < (RHS)2

(x1)2
= 8

3 ÷
1
3 .

3. Leaving Variable. s2 holds the pivot in the second row.

‡All variables are non-negative.
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The next step is create a pivot in the second entry of column x1.

Basis x1 x2 s1 s2 RHS
x2

1
3 1 1

3 0 8
3

s2
2
3 0 −1

3 1 4
3

×1
2

×−1
2
| × 3

2

Z̃ −1
3 0 2

3 0 16
3

⇐⇒

Basis x1 x2 s1 s2 RHS
x2 0 1 1

2 −1
2 2

x1 1 0 −1
2

3
2 2

Z̃ 0 0 1
2

1
2 6

The algorithm terminates when there are no more negative entries in the Z̃−row. We may stop and
read out the solution.

• The bottom right corner gives the negative of the objective function. This tells us that the objective
function Z̃ attains a minimum of −6. Therefore, Z = −Z̃ attains its maximum at 6.

• The values for the basic variables can be can be read off the right-hand column. One may quickly
verify that x2 = x1 = 2 give the maximum Z = 6.

Most conveniently, this is consistent with the graphical solution we obtained earlier in a). ξ

The Simplex Construction Let us give some insight into how the simplex algorithm works.

Theorem 2.27 (Fundamental Theorem of Linear Programming). If a linear programming problem (in
standard form) has optimal solutions, then there is an optimal solution on the corner of the feasible
region.

Geometrically, the simplex method jumps
from one corner to the other. We had
three iterations,

(0) (x1, x2, s1, s2) = (0, 0, 8, 4)
↪→ (x1, x2) = (0, 0);

(1) (x1, x2, s1, s2) = (8
3 , 0, 4

3 , 0)
↪→ (x1, x2) = (0, 8

3);

(2) (x1, x2, s1, s2) = (2, 2, 0, 0)
↪→ (x1, x2) = (2, 2).

The Simplex Method

−1 1 2 3 4

2

4

(2)

(0)

(1)

x1

x2
x1 + 3x2 ≤ 8
x1 + x2 ≤ 4

Feasible Region

In the step (0) 7→ (1), we chose x2 to enter and s1 to leave. In the first constraint ��* 0x1 + 3x2 + s1 = 8, we
set s1 = 0 and solve x2 ⇝ 8

3 . This gives the next corner point (x1, x2) = (0, 8
3).

The choice of variables corresponds to the direction of steepest increase, whereas the solution geomet-
rically corresponds to moving along that direction until one hits the next corner point. The simplex
construction re-iterates this loop until an optimal solution is reached.
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Exercise 3 Maximize Z = 2x1 + x2 subject to the constraints


x1 + x2 ≤ 40

4x1 + x2 ≤ 100

x1, x2 ≥ 0

.

a) Solve the problem graphically.

Sketch.

5 10 15 20 25 30

10

20

30

40

50

(20,20)

x1

x2

x1 + x2 ≤ 40
4x1 + x2 ≤ 100
Feasible Region

Z = 2x1 + x2 = 60

ξ

b) Write the problem in the standard form of linear programming.

Solution. Apply the recipe shown in Exercise 1.

1. Convert into a minimization problem. Maximize Z = 2x1 + x2 ⇐⇒ Minimize Z̃ = −2x1 − x2.

2. Handle unrestricted variables. This is not an issue here, all variables are restricted.

3. Introduce slack variables. This gives rise to the following.

Minimize Z̃ = −2x1 − x2 subject to constraints


x1 + x2 + s1 = 40

4x1 + x2 + s2 = 100

x1, x2, s1, s2 ≥ 0

.

ξ
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c) Solve the problem with the simplex method.

Solution. We proceed in the exact same manner as in (viii.3.c). Let us initialise the simplex tableau with


x1 + x2 + s1 = 40

4x1 + x2 + s2 = 100

x1, x2, s1, s2 ≥ 0

⇐⇒

Basis x1 x2 s1 s2 RHS
s1 1 1 1 0 40
s2 4 1 0 1 100
Z̃ −2 −1 0 0 0

With the choice of s1, s2 as basic variables, we are ready to start with optimization.

1. Entering Variable. Column x1 has the most negative entry (−2) in row Z̃.

2. Minimal Row. The second row has a smaller ratio (RHS)2
(x1)2

= 100
4 compared to (RHS)1

(x1)1
= 40

1 .

3. Leaving Variable. s2 holds the pivot in the second row of the basic solution matrix.

Basis x1 x2 s1 s2 RHS
s1 1 1 1 0 40
s2 4 1 0 1 100

×1
2

×−1
4
| × 1

4
Z̃ −2 −1 0 0 0

⇐⇒

Basis x1 x2 s1 s2 RHS
s1 0 3

4 1 −1
4 15

x1 1 1
4 0 1

4 25
Z̃ 0 −1

2 0 1
2 50

The second iteration gives

1. Entering Variable. Column x2 has the only negative entry (−1
2) in row Z̃.

2. Minimal Row. The first row has a ratio (RHS)1
(x2)1

= 15÷ 3
4 < 25÷ 1

4 = (RHS)2
(x2)2

.

3. Leaving Variable. s1 holds the pivot in the first row of the basic solution matrix.

Basis x1 x2 s1 s2 RHS

s1 0 3
4 1 −1

4 15
−1

3
2
3

| × 4
3

x1 1 1
4 0 1

4 25
Z̃ 0 −1

2 0 1
2 50

⇐⇒

Basis x1 x2 s1 s2 RHS
x2 0 1 4

3 −1
3 20

x1 1 0 −1
3

1
3 20

Z̃ 0 0 2
3

1
3 60

and we may now read off the solution.

• The objective function Z̃ attains a minimum of minus the lower-right entry, i.e. Z̃ = −60. This
implies that Z = 60 is the solution to the maximization problem.

• One may verify that the maximum Z = 60 is attained at x1 = x2 = 20.

This is once again consistent with the graphical result. ξ
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