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Abstract

This document outlines detailed solutions to homework assignments
for Mathematical Modeling, taught by Professor Nikolai Leopold in
the Spring of 2025. Written in an expository style, the goal is to
familiarise and equip the reader with the right ideas for a more
developed treatment of the subject.
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Mathematical Modeling (i) Spring 2025

Exericse 1. A cup of tea at 90◦ C is in a room at constant temperature of 20◦ C. By Newton’s Law
of Cooling, the change of the temperature in time is proportional to the difference between the current
temperature of the tea and the room temperature. It is not affected by the amount of tea.

a) Derive a differential equation that models the temperature T (t) over time. Afterwards, find the
solution of the differential equation.

Proof. Let k > 0 and T be the temperature of tea at time t, with initial temperature T0. The following
differential equation

d

dt
T = −k(T − 20)

expresses the assumption that the change in temperature is proportional to the difference of T and 20◦

C. By separation of variables, we obtain

dT

T − 20 = −kdt =⇒
∫ T

T0

dT̃

T̃ − 20
=
∫ t

0
−k dt̃

=⇒ ln(T̃ − 20)
∣∣∣T
T0

:= ln(T − 20) − ln(T0 − 20) = −kt

e(·)
=⇒ T − 20 = e−kt(T0 − 20) =⇒ T = 20 + e−kt(T0 − 20)

For an initial temperature of 90◦ C, we get that T (t) = 20+e−kt ·70 solves the differential equation. ξ

b) The temperature of the tea is 70◦ C after 5 minutes. Determine the constant which describes the
speed of cooling. When will the temperature of the tea be 40◦ C?

Solution. It is given that T (5) = 70, so that

70 = T (5) := 20 + 70e−k·5 =⇒ e−k·5 = 5
7 =⇒ −5k = ln(5

7) =⇒ k = −
ln(5

7)
5

gives the cooling rate. For T (t) = 40, this is just

40 = T (t40) = 20 + 70e−k·t40 =⇒ 20
70 = e−k·t40

=⇒ ln(2
7) = −k · t40

=⇒ −
ln(2

7)
k

:= ��−
ln(2

7)

��−
ln(5

7)
5

= t40

=⇒ t40 = 5 ·
ln(2

7)
ln(5

7)
≈ 18.62 minutes. ξ
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Mathematical Modeling (i) Spring 2025

Exercise 2. Find the solution of the differential equation d

dx
y(x) = 2xy(x) + x3.

Solution. Note that the aforementioned differential equation is one that is linear and inhomogeneous.
We therefore make use of the Ansatz y = uv to get

u′v + uv′ =: d

dx
(uv)︸︷︷︸
:=y

= 2x · uv + x3. (*)

Next, notice that the choices

u′ = 2x · u & v′ = x3

u
, (i.1)

satisfy (*) by design. We equated the two sides of (*) by comparison. This is the core idea, and with
that we may proceed to solve two simpler differential equations, starting with u.

u′ = 2x · u =⇒
∫ u

u0

du

u
=
∫ x

x0
2x dx =⇒ ln(u) − ln x0︸ ︷︷ ︸

ln( u
u0

)

= x2 − x2
0

=⇒ u = u0ex2−x0
Then, v′ may be written as

d

dx
v = u−1

0 x3e(x2
0−x2) =⇒ v = v0 + u−1

0 ex2
0︸ ︷︷ ︸

constants

·
∫ x

x0
x3e−x2

dx

with the integral evaluating to

∫ x

x0
x3e−x2

dx
t=x2
=

dt=2xdx

1
2

∫ x2

x2
0

te−tdt = 1
2

−te−t −

:=e−t︷ ︸︸ ︷∫
−e−t dt

 ∣∣∣x
2

x2
0

= −1
2e−t(t + 1)

∣∣∣x2

x2
0

= 1
2
(
e−x2

0(x2
0 + 1) − e−x2(x2 + 1)

)
.

Therefore we get
v = v0 + 1

2u−1
0 ex2

0

(
���*

1
e−x2

0(x2
0 + 1) − e−x2(x2 + 1)

)

= v0 + 1
2u−1

0

(
x2

0 + 1 − ex2
0−x2(x2 + 1)

)
Finally, recall that y = uv gives the solution.

y = u0 · ex2−x2
0

(
v0 + 1

2u−1
0

(
x2

0 + 1 − ex2
0−x2(x2 + 1)

))
= u0v0︸ ︷︷ ︸

:=y0

ex2−x2
0 + 1

2ex2−x0(x2
0 + 1) − 1

2(x2 + 1). ξ

Remark. For more on this technique, seek page 5 of lectures 2, 3.
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Mathematical Modeling (i) Spring 2025

Exercise 3. Find the solution of the differential equation d

dx
y(x) = 2xy(x) + (1 + x2)y2(x).

Proof. Using the ansatz y = uv we get that

d

dx
uv = u′v + uv′ = 2x · uv + (1 + x2) · u2v2

By comparison of terms, set

u′ = 2xu (*)

v′ = (1 + x2) · uv2 (**)

then clearly u = Cu · ex2
. The second equation gives

dv

dx
=: v′ = (1 + x2) · Cu · ex2 · v2 =⇒ 1

v2 dv = Cu ·
(
ex2 + x2ex2) · dx

=⇒ −1
v

= Cu ·
∫

(1 + x2) · ex2
dx

=⇒ v = −C−1
u · 1∫

(1 + x2) · ex2dx
.

All-in-all, this gives

y = ��
��−C−1

u · ��Cu · ex2∫
(1 + x2) · ex2dx

= − ex2∫
(1 + x2) · ex2dx

.

We do not attempt to compute the integral
∫

(1 + x2) · ex2
dx, since it is non-elementary. This concludes

the argument. ξ
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Mathematical Modeling (ii) Spring 2025

Exercise 1 Consider the second-order inhomogeneous differential equation

d2

d2x
y(x) − 3 d

dx
y(x) + 2y(x) = ex.

a) Find the general solution to the corresponding homogeneous equation.
Solution. A general solution to the homogeneous equation of the form

a · d2

d2x
y(x) + b · d

dx
y(x) + c · y(x) = 0

is well-studied1, and the idea is to consider the choice of y = eλx. This is great, since this choice



y(x) = eλx

d

dx
y(x) = λeλx

d2

d2x
y(x) = λ2eλx

=⇒ a · λ2eλx + b · λeλx + c · eλx = eλx
(
a · λ2 + b · λ + c

)
= 0

=⇒ a · λ2 + b · λ + c = 0 (since eλx > 0)

in turn yields a polynomial equation, which we are very happy to solve. It simplifies the task to finding
λ. Let us indeed proceed in that very-same spirit, and solve for a = 1, b = −2, c = 2.

1 · λ2 − 3 · λ + 2 = 0 =⇒ λ1 = 1, λ2 = 2 =⇒

y1(x) = ex

y2(x) = e2x
.

Notice that we ended up with two solutions, when we were looking for one. This is a good moment to
recall that any linear combination of homogeneous solutions gives a homogeneous solution,

y(x) = Aex + Be2x for A, B ∈ R

by linearity of the differential operator. As an exercise, try to verify yourself that

d2

d2x
y(x) − 3 d

dx
y(x) + 2y(x) = 0

for the choices of

• y(x) = ex

• y(x) = Aex

• y(x) = ex + e2x

• y(x) = Aex + Be2x. ξ

1see page 10, lectures 2 and 3 on moodle.

ii.1
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Mathematical Modeling (ii) Spring 2025

b) Consider the second-order inhomogeneous differential equation

d2

d2x
y(x) − 3 d

dx
y(x) + 2y(x) = ex.

Find the general solution to the inhomogeneous equation.

Proof. We will use the following lemma from class,

Lemma 1.5 (Lectures 2,3 - Page 9). Consider the following inhomogeneous equation

a · d2

d2x
y(x) + b · d

dx
y(x) + c · y(x) = f(x).

The general solution y(x) may be written as

y(x) = yh(x) + yp(x)

where yh(x) is the general solution of the homogeneous equation, and yp(x) is a particular solution of
the inhomogeneuos equation.

In the previous problem, we established the homogeneous solution to be

yh(x) = Aex + Be2x for A, B ∈ R.

If we can find a particular solution yp(x), then we are done. Now, to find yp(x), one may proceed in the
spirit of the quick method2 of undetermined coefficients. One attempts to guess an Ansatz of a similar
structure to f(x), equal to ex in our case. Another way to proceed is with the variation of constants,
which is more informative.3

The idea is to equate yp(x) to yh(x), but with coefficients that vary in x. Instead of constants A, B, we
write

yp(x) = A(x)ex + B(x)e2x

as functions of x. This reduces the problem to that of finding the coefficients A(x), B(x), since that

automatically describes yp(x). With this description, let us compute d

dx
yp(x), d2

d2x
yp(x).

d

dx
yp(x) := A′(x)ex + B′(x)e2x + A(x)ex + 2 · B(x)e2x.

Let us enforce a restriction on A′(x), B′(x). This will become very useful in a moment.

A′(x)ex + B′(x)e2x = 0. (1)
2Page 2, Lectures 4,5, on moodle.
3This is a subjective opinion.

ii.2
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Mathematical Modeling (ii) Spring 2025

This implies

d

dx
yp(x) =(1) A′(x)ex + B′(x)e2x︸ ︷︷ ︸

= 0 by assumption (1)

+A(x)ex + 2 · B(x)e2x = A(x)ex + 2 · Be2x. (*)

Next, we compute d2

d2x
yp(x).

d2

d2x
yp(x) = d

dx

(
d

dx
yp(x)

)
=(∗) d

dx

(
A(x)ex + 2 · B(x)e2x

)
= A′(x)ex + 2 · B′(x)e2x + A(x)ex + 4 · B(x)e2x (**)

In total, we obtain


y(x) = A(x)ex + B(x)e2x

d

dx
y(x) = A(x)ex + 2 · Be2x (by *)

d2

d2x
y(x) = A′(x)ex + 2 · B′(x)e2x + A(x)ex + 4 · B(x)e2x. (by **)

Plugging this into the inhomogeneous differential equation gives

ex = d2

d2x
y(x) − 3 d

dx
y(x) + 2y(x)

=

=
d2

d2x
y(x)︷ ︸︸ ︷

A′(x)ex + 2 · B′(x)e2x + A(x)ex + 4 · B(x)e2x −3

=
d

dx
y(x)︷ ︸︸ ︷(

A(x)ex + 2 · B(x)e2x
)

+2

=y(x)︷ ︸︸ ︷(
A(x)ex + B(x)e2x

)
= A′(x)ex + 2 · B′(x)e2x +

����������:0
A(x)ex (1 − 3 + 2)︸ ︷︷ ︸

=0

+
������������:0
B(x)e2x (4 − 3 · 2 + 2)︸ ︷︷ ︸

=0

= A′(x)ex + 2 · B′(x)e2x. (2)

Now that we have two equations (1), (2) in the two variables A′(x), B′(x), we may express it as a system
of linear equations,

A′(x)ex + B′(x)e2x = 0 (1)

A′(x)ex + 2 · B′(x)e2x = ex (2)
=⇒

(
ex e2x

ex 2e2x

)(
A′(x)
B′(x)

)
=
(

0
ex

)
.

which has the solution vector
(A′(x)

B′(x)
)

=
(−1

e−x

)
. To find A(x), B(x), we integrate disregarding the con-

ii.3
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stants 4 to get

A′(x) = −1 =⇒ A(x) = −x

B′(x) = e−x =⇒ B(x) = −e−x.

That in turn yields yp(x) =
:=A(x)ex+B(x)e2x︷ ︸︸ ︷

−xex − ex . Utilising the homogeneous solution yh(x) from the previous
problem, (1.5) allows us to write

y(x) =

yh(x)︷ ︸︸ ︷
Aex + Be2x +

yp(x)︷ ︸︸ ︷
−xex − ex

= Aex + Be2x − xex for A, B ∈ R. ξ

c) Consider the second-order inhomogeneous differential equation

d2

d2x
y(x) − 3 d

dx
y(x) + 2y(x) = ex.

Find the specific solution that satisfies the conditions y(0) = 1 and
(

d
dxy)(0) = 0.

Solution. Simply, one combines the result from the previous exercise

y(x) = Aex + Be2x − xex

with the initial conditions to obtain a system of equations

1 = y(0) = A + B

0 = y′(0) = Ae0 + 2Be2·0 − e0 − 0 · e0

= A + 2B − 1

which has the solutions A = −3, B = 2. We write

y(x) = −3ex + 2e2x − xex. ξ

4We can do this, since the constants are accounted for in the homogeneous equation. For example, if A(x) = −x + c
then A(x)ex = −xex + cex which we combine with the constant term Aex from yh(x) = Aex + Be2x.

ii.4
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Exercise 2 The logistic equation is a model for population growth with a maximum sustainable
population. It is given by

d

dt
P (t) = rP (t)

(
1 − P (t)

K

)
,

where P (t) denotes the size of the population at time t, r > 0 is the (constant) growth rate of the
population, and K > 0 is the maximum sustainable population.

a) Sketch the direction field for the logistic equation.

Sketch. An ordinary differential equation d

dt
x⃗(t) = f(x⃗(t)) is defined by a vector field f. In this case,

the equation only has one variable, and thus the vector field is one-dimensional.5 Moreover, f is given
exactly by the logistic equation

f : R → R with P 7→ f(P ) = rP (1 − P

K
).

A very rough sketch of the vector field is therefore

0 K P0 K P

Vector Field for Logistic Equation f(P ) = rP
(
1 − P

K

)
ξ

b) Explain in words how P (t) changes when P (t) ≪ K, P (t) = K, and P (t) > K. How does P (t)
behave for large times?

Explanation. There are three cases to consider.

P (t) ≪ K | First, let it be clear that P (t) ≪ K means that P (t) is significantly smaller than K. If this is the
case, then the fraction P (t)

k is very small, and may be neglected. Then, 1 − P (t)
K is close to 1, and

d

dt
P (t) ≈ rP (t).

This is the equation for exponential growth with rate r. This means that P (t) grows almost expo-
nentially towards K, and we may write P (t) ≈ ert.

P (t) = K | In that case, 1 − P (t)
K = 0, and

d

dt
P (t) = rP (t)

���
���*

0
(1 − P (t)

K
) = 0

5Seek page 8 of Lectures 4,5 for examples.

ii.5
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implies that P (t) is a constant, fixed value. This is a natural consequence, since the constant K

does not depend on t. The population is then in a state of equilibrium at P (t) = K.

P (t) > K | Finally, 1 − P (t)
K

< 0 gives
d

dt
P (t) = rP (t)(1 − P (t)

K
)︸ ︷︷ ︸

<0

< 0

meaning that the population is too big, and decays towards P (t) = K.

In summary, the relation between P (t) and K characterizes d

dt
P (t). Precisely: as t gets larger, the

population P (t) tends to a state of equilibrium P (t) = K. ξ

c) Find the solution to the logistic equation with initial condition P (0) = P0.
Solution. First, let us re-write the equation as

dP

dt
= rP

(
1 − P

K

)
Next, separate the variables and rewrite

dP

P · (1 − P

K
)

= r dt as K

P · (K − P ) · dP = r dt.

Partial Fractions. The left-hand side is difficult to integrate in this form. It would be much easier if
we could write it as two terms A

P and B
K−P for some constants A, B. Luckily, the partial fraction method

provides just that. Assume indeed that

K

P · (K − P ) = A

P
+ B

K − P

×P (K−P )=⇒ K = A · (K − P ) + B · P =⇒ K = P · (B − A) + A · K.

Notice that the first statement in this chain of implications is an identity6 on P , and thus we may plug-in
P = 0 in the final statement to get

P · (B − A) + A · K = K
P =0=⇒ A = 1.

By substituting A = 1 into the equation and solving for B, we get that

P · (B − 1) + K = K =⇒ B = 1

As an exercise, you may check that K

P · (K − P ) = 1
P

+ 1
K − P

.

6is true for all P .
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Integration. With the partial fractions expression, we write

K

P · (K − P ) · dP = r dt
Partial Fractions=⇒ 1

P
+ 1

K − P
= r dt =⇒

∫ 1
P

dp +
∫ 1

K − P
dp =

∫
r dt

=⇒ ln(P ) − ln(K − P ) = rt + C =⇒ ln
(

P

K − P

)
= rt + C.

P(t) =? Solving for P, we get

ln
(

P

K − P

)
= rt + C =⇒ P

K − P
= ert · eC =⇒ P (t) = Kert · ec

1 + ert · eC
for C ∈ R.

Initial Condition. To find the constant C (rather eC), we utilise the initial condition P (0) = P0 to
write

P0 = P (0) = Ker·0 · eC

1 + er·0 · eC
= KeC

1 + eC
=⇒ eC = P0

K − P0
.

Plug this into the expression to get

P (t) = Kert · A

1 + ert · A
for A = P0

K − P0
. ξ

ii.7
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Exercise 3 Consider the system of ODEs


d
dtx(t) = x(t) − y(t)
d
dty(t) = x(t) + y(t).

a) Sketch the vector field.

Sketch. Let us start with some observations, and compute gradient at different vectors
[
x

y

]
.

1. (x, y) = (1, 0) =⇒


dx

dt
= 1 − 0 = 1

dy

dt
= 1 + 0 = 1

2. (x, y) = (0, 1) =⇒


dx

dt
= 0 − 1 = −1

dy

dt
= 0 + 1 = 1

3. (x, y) = (−1, 0) =⇒


dx

dt
= −1 − 0 = −1

dy

dt
= −1 + 0 = −1

4. (x, y) = (0, −1) =⇒


dx

dt
= 0 − −1 = 1

dy

dt
= 0 + −1 = −1

A positive gradient in x indicates growth in the x−direction, and a negative gradient in y indicates decay
in the y−direction. This is a good point to stop and observe some nice drawings.

−2 −1 0 1 2−2

−1

0

1

2

Equilibrium (1, 1)

(−1, 1)

(−1, −1)

(1, −1)

x

y

Vector Field Directions − I

It seems that there is a tendency to go counter-clockwise. It is not clear just yet whether the trajectories

converges inward or diverges outward. For this, let us compute the gradient for vectors
[
x

y

]
with greater

magnitude.

ii.8



Mathematical Modeling (ii) Spring 2025

1. (x, y) = (2, 0) =⇒


dx

dt
= 2 − 0 = 2

dy

dt
= 2 + 0 = 2

2. (x, y) = (0, 2) =⇒


dx

dt
= 0 − 2 = −2

dy

dt
= 0 + 2 = 2

3. (x, y) = (−2, 0) =⇒


dx

dt
= −2 − 0 = −2

dy

dt
= −2 + 0 = −2

4. (x, y) = (0, −2) =⇒


dx

dt
= 0 − −2 = 2

dy

dt
= 0 + −2 = −2

The gradients seem to get greater in magnitude. This indicates an unstable vector field whose trajectories
diverge outwards with time.

−4 −3 −2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3

(1, 1)

(−1, 1)

(−1, −1)

(1, −1)

(2, 2)

(−2, 2)

(−2, −2)

(2, −2)

x

y
Vector Field Directions − II

With these observations, the vector field should take on the form

−2 −1 0 1 2−2

−1

0

1

2

x

y

Vector Field for d
dt

[
x

y

]
=
[
x − y

x + y

]

0

1

2

3

4
Ve

ct
or

M
ag

ni
tu

de

ξ
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b) Consider the system of ODEs 
d
dtx(t) = x(t) − y(t)
d
dty(t) = x(t) + y(t).

Using the vector field sketch, sketch a few representative solution trajectories in the phase space.

Sketch. Using our vector field sketch, we pick some starting points and see where the vector field flows
them to.

−2 −1 0 1 2−2

−1

0

1

2

x

y

Trajectories

0

1

2

3

4

Ve
ct

or
M

ag
ni

tu
de

ξ

c) Consider the system of ODEs 
d
dtx(t) = x(t) − y(t)
d
dty(t) = x(t) + y(t).

Determine if the orbits are periodic.
Hint: Look at the arrows in the vector field as you move away from the origin. Do they drive you further
away, or do they guide you back toward a loop? If the arrows push you away, the orbits are not periodic.

Solution. Clearly, and as demonstrated above, the orbits are not periodic. ξ
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Exercise 3, but Analytically − Bonus Consider the system of ODEs


d
dtx(t) = x(t) − y(t)
d
dty(t) = x(t) + y(t).

Describe the analytical behaviour of this system.

Description. First, observe that the system of equations is linear, which is very nice. Let us combine
the two first-order differential equations into one degree-two differential equation.

x′ = x − y
d
dt=⇒ x′′ =

:=x−y︷︸︸︷
x′ − y′︸︷︷︸

:=x+y

= −2 · y︸︷︷︸
:=x−x′

= −2(x − x′) =⇒ x′′ + 2x′ − 2x = 0

This is exactly the same setup as in 1a). Proceed with the choice of x = eλt, and let us solve for λ.

x′′ + 2x′ − 2x = 0 x(t)=eλt

=⇒ et(λ2 + 2λ − 2) = 0 =⇒ λ1,2 = 2 ±
√

4 − 4 · 2
2 = 1 ± i.

Next, the following remark is quite useful,

Remark. If λ1,2 = α + iβ are two complex solutions to the characteristic equation, then

eαt cos(βt) & eαt sin(βt)

are two linearly independent solutions.7

The general solution x(t) is the linear combination of all independent solutions. The remark thus allows
us to write the solutions for α = 1, β = 1 to get

x(t) = et(A cos t + B sin t).

Next, y = x − x′ gives

y(t) = ((((((((((
et(A cos t + B sin t) −

(
((((((((((
et(A cos t + B sin t) + et(−A sin t + B cos t)

)
= et(A sin t − B cos t).

With the solution x(t) = et(A cos t + B sin t)

y(t) = et(A cos t − B sin t)

in hand, let us attempt to study the behaviour of x(t), y(t) with time. First, the solution is unstable
in the sense that its magnitude grows exponentially with time; credited to the factor et. The cos t, sin t

factors add a counter-clockwise rotation to the field. To conclude, the trajectories spiral outwards in a
counter−clockwise direction. The vector 0⃗ must therefore be the only equilibrium point. ξ

7We know this from class. See the Remark on Page 14, Lectures 2 and 3 on moodle.
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Exercise 1 Let the velocity be defined as v(t) = d
dtx(t).

a) Express the second-order differential equation d2

d2t
x(t) + k

mx(t) = 0, which models an undamped
harmonic oscillator without external forcing, as an equivalent system of first-order ordinary differential
equations using the velocity variable v(t).

Solution. If v = x′ as the question assumes, then v′ = x′′ and we may re-write the second-order differ-
ential equation as a system of two equations, both of first-order. ξ

x′ = v (iii.1)

v′ = − k

m
· x (iii.2)

b) Sketch the vector field and phase portrait corresponding to the system of first-order ODEs from part
a) for the parameter values k = 2 and m = 2.

Remark. The choice k = m = 2 gives rise to

x′ = v

v′ = −x
. This is precisely Example 1 from the lecture,

differing only by a minus sign.1 This difference is, in fact, reflected in the direction of rotation, which
is clockwise compared to anti-clockwise sketch of the example. There, a similar phase portrait is offered
as well. We proceed nevertheless without this knowledge.

Sketch. The system corresponding to the choices k = m = 2 is given by f(x, v) =
( v

−x

)
. To plot its

associated vector field and phase portrait, one simply computes the gradient at a few points in the
xv−plane to get the vector field, then traces some trajectories along these gradient vectors. 2

−2 0 2

−2

0

2

x

v

Vector Field Sketch

0

1

2

3

4

||(
x

,v
)||

−2 0 2

−2

0

2

x

v

Phase Portrait

ξ

1See Page 8, Section 1.3, Lectures 4 & 5
2See (ii.3) for more on this technique.

iii.1

https://elearning.constructor.university/pluginfile.php/126070/mod_resource/content/1/Lectures%204%20and%205.pdf


Mathematical Modeling (iii) Spring 2025

c) Sketch the vector field and phase portrait for the same system with parameter values k = 8 and
m = 2. Describe how and why the phase portrait changes when the parameter k is increased.

Sketch. The system of equations


x′ = v

v′ = − k

m
· x

tells us that dx

dt
= v and dv

dt
= − k

m
· x. Since both the

vector field and phase portrait live in the xv−plane, it is a good idea to eliminate the time component.
For this, compute dv

dx using the chain rule to get dv
dt · dt

dx = −k
m · x

v . This is a separable differential equation!

v dv = − k

m
· x dx

∫
...

=⇒ v2

2 = −k

m
· x2

2 + C
×2=⇒ v2 = − k

m
· x2 + 2C

+ k
m

·x2

=⇒ v2 + k

m
· x2 = 2C

× m
2=⇒ 1

2mv2 + 1
2kx2 = mC

For physicists, this should be familiar! The expression 1
2 · mv2 encodes potential energy, whereas kinetic

energy is displayed as 1
2 · kx2. This is the conservation law of energy. To see this, set E = mC and write

1
2mv2(t) + 1

2kx2(t) = E(t)

= E(0) := 1
2mv2(0) + 1

2kx2(0).

The equation E(t) = E(0) encodes that the initial total energy E(0) is preserved as time flows. All
points of the solutions

(x
v

)
with initial condition

(x0
v0

)
should therefore lie on an ellipse.3

−2 0 2

−2

0

2

x

v

Vector Field Sketch

1

2

3

4

||(
x

,v
)||

−2 0 2

−4

−2

0

2

4

x

v

Phase Portrait

E = 0.25
E = 0.5
E = 2

E = 6.25
E = 16

To study the change in phase portrait upon varying k, consider the horizontal endpoints of the ellipse
on the x−axis. There, we have v = 0 and E = 1

2kx2. The energy is constant4, therefore increasing k

implies that x2 must decrease. This forces both endpoints to get closer to the origin. You may convince
yourself by a similar argument that increasing m shifts the ellipse in the vertical direction. ξ

3The conservation law of energy is an equation of an ellipse. Do you see this?
4by the conservation law
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Exercise 2 Consider the function f : R → R defined by f(x) = x
2
3 .

Before commencing with the proof, let us give two precise definitions.5

Definition 1.13 (Global Lipschitz Continuity). A function f : R → R is locally Lipschitz continuous if
there exists an L > 0 such that

|f(x) − f(y)| ≤ L|x − y|

for all x, y ∈ R.

Definition 1.13 (Local Lipschitz Continuity). A function f : R → R is globally Lipschitz continuous if
for every x0 we may find a neighbourhood Ux0 around it such that

|f(x) − f(y)| ≤ Lx0 |x − y|

for all x, y ∈ Ux0 . The subscript x0 signifies the dependence of L on x0.

Next, proceed to prove the following statements.

a) Show that f is not locally Lipschitz continuous.

Proof. First, notice that f(x) := x
2
3 = 3√

x2 behaves not-so-nicely near x = 0. Formally, the derivative

f ′(x) = 2
3x− 1

3

exists for x ̸= 0, and is unbounded6 as x approaches 0. This makes it a possible candidate point to
exploit. Proceed, and suppose for the sake of contradiction that f is Lipschitz. Then this suggests that
we may find δ, Lx0 > 0 such that

|x
2
3 − y

2
3 | ≤ Lx0 |x − y|.

for all x, y ∈ (−δ, δ). To utilise our earlier observation, set y = 0 and let x → 0+ to get

x
2
3 ≤ Lx0x

×x−1
=⇒ x− 1

3 ≤ Lx0 (*)

for some constant L. Notice, however, that (*) implies that

∞ = lim
x→0+

x− 1
3 ≤ Lx0 .

⇝

Clearly, there is no constant Lx0 that works, thus the assumption fails. ξ

5Do you remember this from Analysis I? If not, seek Page 1, Lecture 8
6|f ′(x)| → ∞

iii.3

https://elearning.constructor.university/pluginfile.php/127103/mod_resource/content/1/Lecture%208.pdf


Mathematical Modeling (iii) Spring 2025

b) Consider the function g : R → R defined by g(x) = x3. Show that g is locally Lipschitz continuous
but not globally Lipschitz continuous.

Proof. To show that g is locally Lipschitz continuous, choose x0 ∈ R, and let Ux0 = [x0 − δ, x0 + δ] for
some positive δ. Notice that Lipschitz continuity is equivalent to

|g(x) − g(y)| ≤ Lx0 |x − y| ⇐⇒ |g(x) − g(y)|
|x − y|

≤ Lx0 .

Proceed with yet another observation − g is continuous on the closed interval [x0 − δ, x0 + δ] and
differentiable on the open interval (x0 − δ, x0 + δ). Apply the mean value theorem to establish the
existence of some ξ ∈ [x0 − δ, x0 + δ] for which

g′(ξ) = |g(x) − g(y)|
|x − y|

for all x, y ∈ [x0 − δ, x0 + δ]. Combining both facts, we notice that

|g(x) − g(y)|
|x − y|

= g′(ξ) ≤ Lx0 .

To bound the derivative g′(x) = 3x2 over [x0 − δ, x0 + δ], we note that max(|x0 − δ|, |x0 + δ|) maximizes
g. Therefore, the choice of

Lx0 := max(|x0 − δ|, |x0 + δ|)

gives the result. Observe how L always depends on the choice of x0. In that respect, it is not universal.

In a style similar to a), we show that g is not globally Lipschitz. Assume for the sake of contradiction
that g is globally Lipschitz, then we establish the existence of L for which

|x3 − y3| ≤ L|x − y|.

for any x, y ∈ R. Therefore, it would not cause an issue if one makes the choice of y = 0 to get that

|x3|≤L · |x| ×|x−1|=⇒ |x2| ≤ L.

The implication is clearly false, since the statement should hold for all x ∈ R. Taking |x| −→ ∞ gives
the contradiction. ⇝
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Exercise 3 Prove that every continuously differentiable function f : R → R is locally Lipschitz
continuous. Hint: One possibility is to use the inequality

∣∣ ∫ y
x g(t) dt

∣∣ ≤
∫ y

x |g(t)| dt.

The extreme value theorem in higher dimensions is stated later in Lectures 14 & 15.

Theorem 2.24 (Extreme Value Theorem). If f : S → Rd is continuous on a closed and bounded set
S ⊆ Rd, then f attains a minimum and maximum value on S. Precisely, one writes

(∀x⃗ ∈ S)(∃ a⃗, b⃗ ∈ S) : f (⃗a) ≤ f(x⃗) ≤ f (⃗b).

It is a good idea nevertheless to include it here, as it recaps the one-dimensional case.

Proof. Given x0, the goal is to show that we can find a neighbourhood Ux0 on which the Lipschitz
condition is satisfied. Assume indeed that f is continuously differentiable. Then, f ′ is continuous, and
for x0 ∈ R we may choose Ux0 = [x0 − δ, x0 + δ] for some δ > 0. Theorem 2.24 gives an upper bound

|f ′(t)| ≤ Mx0 (*)

for every t ∈ Ux0 . Notice that for fixed δ, the value of Mx0 depends on x0. Next, write

f(y) − f(x) =
∫ y

x
f ′(t) dt (fundamental theorem of calculus)

for x, y ∈ Ux0 . We are yet to utilize the hint. To account for this shortcoming, write

|f(y) − f(x)| =
∣∣∣∣∫ y

x
f ′(t) dt

∣∣∣∣ ≤
∫ y

x
|f ′(t)| dt

(∗)
≤ Mx0 · (y − x) ≤ Mx0 · |x − y|.

This statement is true for all x, y ∈ Ux0 with x ≤ y. The point x0 was arbitrarily chosen, therefore f

must be locally Lipschitz. ξ
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