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1 Noise Sensitivity

1.1 On Boolean Functions

The notion of Noise sensitivity was first introduced by Benjamini, Kalai and Schramm [1] in their seminal work
on Boolean functions. Given a string x of n−many bits, set x̃ to be the string that disagrees with x on the
i-th bit with a small probability p. Here, x̃ is seen as a random perturbation of x. The noise sensitivity� of f
is then measured by

NSp(f) := P[f(x̃) ̸= f(x)]

which captures how much noise is needed to perturb the output. We then say that f is noise sensitive if there
exists a p ∈ (0, 1) for which

lim
n→∞

NSp(f) =
1

2
.

It is noise insensitive if the same limit converges to (0, 12 ), and noise stable if for vanishingly small p, the limit
converges to zero uniformly in n. For instance, it is not difficult to believe that the parity function is a great
example of a noise sensitive boolean function, whereas the majority function is noise stable for vanishingly
small perturbations. It is important to note that convergence of NSp(f) to

1
2 encodes the idea that the odds are

no better than a random output, that is either zero or one with probability 1
2 . In that respect, f is sensitive.

1.2 On Binary Relations

We propose a construction of a similar taste on binary relations. For every pair i, j ∈ X, let Xij be a Bernoulli
random variable with parameter p. Next, require that

i ∼′ j ⇐⇒

{
i ∼ j ∧ Xij = 0

i ̸∼ j ∧ Xij = 1
.

In a new noisy relation ∼′, we eliminate pairs i ∼ j with Xij = 1 and introduce i ̸∼ j with Xij = 1. The
challenge here is that, unlike on boolean functions, only one flip is required to yield a completely new relation,
making it impractical to directly compare ∼′ to ∼ . To address this, we define a recovery-based notion of
stability,

NS(∼) := inf
A

P[A(∼′) ̸= (∼)]

where A is understood to be a recovery algorithm. It is important to note that if |X| = n, an order Θ(1)
of noise will asymptotically destroy all structure, as one expects Θ(n2) flips on all pairs (i, j) ∈ X2. Setting
p = Θ(1) therefore not only trivialises the theory, it goes against the original idea of small perturbations. For
these reasons we would like to relax the noise condition.

Definition 1.1 (Noise Sensitivity on Binary Relations). Let ∼ be a binary relation on X, and set p = O(1/n).
Next, define

L := lim
|X|→∞

NS(∼).

1. If L = 0, then ∼ is noise stable.�

2. If L ∈ (0, 1), and ∼ is not noise stable, then ∼ is noise insensitive.

3. If L = 1, then ∼ is noise sensitive.

Remark. ∼ is noise sensitive, then any algorithm almost surely fails, and is no better than a random prediction.
This is consistent with the boolean setting, with the subtle difference that the target space of binary relations
is infinite. A random prediction is therefore incorrect with probability 1, and not 1

2 as observed earlier.

The following discussion studies noise sensitivity on an equivalence relation, and motivates a recovery algorithm
that utilises its natural properties.

[1] Noise Sensitivity of Boolean Functions and Applications to Percolation.
�While this is not the original definition, one may show that it is equivalent to asymptotic noise sensitivity in [1].
�The uniformity condition is satisfied, as an algorithm A that tolerates a noise rate p also tolerates p′ < p.
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1.3 On Equivalence Relations

One starts with an equivalence relation (X,∼) of size n. Here, we apply noise symmetrically* to all distinct
pairs i, j ∈ X. To give an example,

Equivalence Relation (X,∼)
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Noise Relation (X,∼′) with p = 1/20.
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N.B: Reflexivity is not reflected in this graph.

Central to our discussion is the question on recoverability. One may concede that it is quite tempting to simply
conclude that X1 and X2 are two separate equivalence classes; however, this intuition needs be formalised.

The focus then turns to the transitive encoding of ∼, which is lost with probability one. All transitivity,
however, is not lost! Much of the transitivity survives under noise. The first question this thesis answers is
that of quantifying how much is lost.

Definition 1.2 (Score). For i, j ∈ X, define

s(i, j) =
∑

w∈X\{i,j}

1[i ∼ w] · 1[w ∼ j]

to be the count of neighbours of w that witness the relation of i, j.

Remark. This natural measure pushes the transitive property to its full length. It is not difficult to see that
for members i ∼ j there are nα − 2 other witnesses w ∈ Xα, with nα the size of Xα. If i ̸∼ j, then the score is
simply null.

Definition 1.3 (Score Matrix). Define

S∼ :=


s(1, 1) s(1, 2) . . . s(1, n)
s(2, 1) s(2, 2) . . . s(2, n)

...
...

. . .
...

s(n, 1) . . . s(n, n− 1) s(n, n)


to store the scores s(i, j) for every i, j ∈ X.

For the previous example, S∼ is just


1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

8 0 7 0 0 7 7 0 0 0 7 0 7 7 0 0 7 0 0 7
0 10 0 9 9 0 0 9 9 9 0 9 0 0 9 9 0 9 9 0
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| 1
| 2

20×20

whereas a noisy S∼′ is given by


1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

7 1 6 1 0 6 6 0 0 0 6 0 6 7 1 0 6 0 1 6
1 11 0 9 9 3 1 9 9 9 1 8 1 4 9 9 2 8 9 1
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20×20

Fixing x ∈ X, observe the significant gap between scores of members i ∼ x and those of non-members j ̸∼ x.

*in the sense that Xij = Xji.
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For instance, sorting the first row recovers members i ∈ X1 completely. Not only that, but it naturally
recommends 2 to sieve out its members from the set of possible j ∈ X2.


5 8 9 10 12 16 18 2 4 15 19 3 6 7 11 13 17 20 1 14

0 0 0 0 0 0 0 1 1 1 1 6 6 6 6 6 6 6 7 7
9 9 9 9 8 9 8 11 9 9 9 0 3 1 1 1 2 1 1 4
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20×20

This seems to be no isolated case, but rather a global phenomena. Sorting each row ascendingly, one may
observe the sharp jumps in scores.

0 0 0 0 0 0 0 1 1 1 1 6 6 6 6 6 6 6 7 7
0 1 1 1 1 1 2 3 4 8 8 9 9 9 9 9 9 9 9 11
0 1 1 1 1 1 1 2 2 3 3 6 6 7 7 7 7 7 7 9
1 1 1 1 1 1 2 2 4 8 8 9 9 9 9 9 9 9 10 11
0 0 0 0 0 1 1 2 3 8 8 9 9 9 9 9 9 9 9 10
1 2 2 2 2 2 2 2 3 3 4 6 7 7 7 7 7 7 7 10
0 0 0 0 0 0 1 1 1 2 2 6 6 7 7 7 7 7 7 8
0 1 1 1 1 2 2 2 3 8 8 9 9 9 9 9 9 10 10 11
0 0 0 0 0 1 1 2 3 8 8 9 9 9 9 9 9 9 9 10
0 0 0 0 0 1 1 2 3 8 8 9 9 9 9 9 9 9 9 10
0 0 0 0 0 0 1 1 1 2 2 6 6 7 7 7 7 7 7 8
0 0 0 0 0 1 1 2 3 8 8 8 8 8 8 8 8 8 9 9
0 0 0 0 0 0 1 1 1 2 2 6 6 7 7 7 7 7 7 8
2 3 3 3 3 3 3 3 3 4 4 6 6 6 6 6 7 7 7 10
1 1 2 2 2 2 3 3 4 8 8 9 9 9 9 9 9 10 10 12
0 0 0 0 0 1 1 2 3 8 8 9 9 9 9 9 9 9 9 10
1 1 1 1 1 1 1 2 2 2 3 6 7 7 7 7 7 7 7 9
0 0 0 0 0 1 1 2 3 8 8 8 8 8 8 8 8 8 9 9
1 2 2 2 2 2 3 3 3 8 8 9 9 9 9 9 10 10 10 12
0 0 0 0 0 0 1 1 1 2 2 6 6 7 7 7 7 7 7 8
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Fixing x ∈ X1, one finds the score distribution� for noisy scores ŝ(x, i) and ŝ(x, j) below. Here, x ∼ i but
x ̸∼ j. The key observation is that the distributions of ŝ(x, i) and ŝ(x, j) are almost distinguishable.
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If we may possibly distinguish between the two scores via some score gap, then one only needs to compute the
scores to determine membership. This is a rather exciting prospect, whose feasibility we shall explore in the
following discussion.

2 Formalism

For this discussion, fix x, i ∈ Xi to be members of the same class, and j ∈ Xj to be a member of another class.

If ξ̂in := ŝ(x, i) is and ξ̂out = ŝ(x, j) are the perturbed scores of i, j with respect to x, set

ξ̂ := ξ̂in − ξ̂out

to be the random variable that captures the score gap. Let us prove a few interesting results.

�Both random variables follow a Poisson Binomial distribution, see (2.1), (2.2).
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2.1 The Score Gap

Lemma 2.1. The random variable ξ̂in is given by

s̃(x, i) =
∑

w∈Xi\{x,i}

(1−Xxw) · (1−Xwi) +
∑

w/∈Xi

Xxw ·Xwi.

Argument. A quick justification goes as follows. If w ∈ Xi, then x ∼ w ∧ w ∼ i. This relation survives in
∼′ if the relations do not flip, meaning Xxw = Xwi = 0. On the other hand, w /∈ Xi implies that w is not
connected to either elements, and both relations must flip to get a contribution.

X
w

i
=

0

Xw
x
=
0

X
iw = 1

Xxw = 1

i

x

w

w

ξ

Lemma 2.2. The random variable ξ̂out is given by

s̃(x, j) =
∑

w∈Xi\{x}

(1−Xxw) ·Xwj +
∑

w∈Xj\{j}

X1w · (1−Xwj) +
∑

w/∈Xi⊔Xj

Xxw ·Xwj

Argument. w ∈ Xi implies that the inner-connection Xwx must not flip, while the outer-connection Xwj must
flip. The same argument is true for w ∈ Xj . Finally, and as discussed earlier, w /∈ Xi ⊔Xj costs two flips.

X
w
x
=

0

X
j
w

=
0

Xxw = 1Xwj
= 1

Xwj = 1

Xxw
= 1

x

w

w

j

w

ξ

Lemma 2.3. The gap ξ̂ := ξ̂in − ξ̂out is given by

(Xxi +Xxj − 1) ·Xij +
∑

w∈Xi\{x,i}
(1−Xxw) · (1−Xwi −Xwj) +

∑
w∈Xj\{j}

Xxw · (Xwi +Xwj − 1) +
∑

w/∈Xi⊔Xj

Xxw · (Xiw −Xjw)

that is, a sum of independent random variables. Furthermore, if ξ := E[ξ̂] is the expected gap, then

ξ = (ni − 2)− (3ni + nj − 6) · p+ (2ni + 2nj − 4) · p2 = O(ni).

Computation. Using the previous two computations, we write

ξ̂ = ξ̂in − ξ̂out =

A︷ ︸︸ ︷∑
w∈Xi\{x,i}

(1−Xxw) · (1−Xwi)+

B︷ ︸︸ ︷∑
w/∈Xi

Xxw ·Xwi (by 2.1)

−
∑

w∈Xi\{x}

(1−Xxw) ·Xwj︸ ︷︷ ︸
C

−
∑

w∈Xj\{j}

Xxw · (1−Xwj)︸ ︷︷ ︸
D

−
∑

w/∈Xi⊔Xj

Xxw ·Xwj︸ ︷︷ ︸
E

. (by 2.2)
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To obtain a sum of independent random variables, one would like to rewrite this expression over disjoint sets.

A− C :=
∑

w∈Xi\{x,i}

(1−Xxw) · (1−Xwi)−
∑

w∈Xi\{x}

(1−Xxw) ·Xwj

=(Xxi − 1) ·Xij +
∑

w∈Xi\{x,i}

(1−Xxw) · (1−Xwi −Xwj) (a)

B − E −D :=
∑

w/∈Xi

Xxw ·Xwi −
∑

w/∈Xi⊔Xj

Xxw ·Xwj −
∑

w∈Xj\{j}

Xxw · (1−Xwj)

=
∑

w∈Xj

Xxw ·Xwi +
∑

w/∈Xi⊔Xj

Xxw · (Xwi −Xwj) +
∑

w∈Xj\{j}

Xxw · (Xwj − 1)

=Xxj ·Xji +
∑

w/∈Xi⊔Xj

Xxw · (Xiw −Xjw) +
∑

w∈Xj\{j}

Xxw · (Xwi +Xwj − 1) (b)

Adding (a) to (b) gives the result, where the singletons are factored together via Xij = Xji. By linearity of
expectation, ξ is then the sum of expected values of each component of the sum.

ξ = (2p− 1) · p+ (ni − 2) · (1− p) · (1− 2p) + (nj − 1) · p · (2p− 1) + 0

Rewriting as a polynomial in p, one obtains the result. ξ

Lemma 2.4. Var[ξ̂] is of order O(ni · p). More precisely,

Var[ξ̂] = (3ni + nj − 6) · p+ (2n− 11ni − 5nj + 18) · p2 + (12ni + 8nj − 2n− 20) · p3 + (−4ni − 4nj + 8) · p4

Proof. If A,B ∼ Bern(p), then

� A2 = A =⇒ E[A2] = p

� (1−A)2 = (1−A) =⇒ E[(1−A)2] = 1− p

� (1−A−B)2 = (1 + 2AB −A−B) =⇒ E[(1−A−B)2] = 1− 2p+ 2p2

Utilising Var[Z] := E[Z2]− E[Z]2, we get that

Var
[
(Xxi +Xxj − 1) ·Xij

]
= (1− 2p+ 2p2) · p− (1− 2p)2 · p2 = p− 3p2 + 6p3 − 4p4

Var
[
(1−Xxw) · (1−Xwi −Xwj)

]
= (1− p) · (1− 2p+ 2p2)− (1− p)2 · (1− 2p)2 = 3p− 9p2 + 10p3 − 4p4

Var
[
Xxw · (Xwi +Xwj − 1)

]
= p · (1− 2p+ 2p2)− p2 · (1− 2p)2 = p− 3p2 + 6p3 − 4p4

Var
[
Xxw · (Xiw −Xjw)

]
= p · (2p− 2p2)− 0 = 2p2 − 2p3

Then, by independence, Var(ξ̂) is the sum of variances of individual terms. Computation (2.3) gives

Var[ξ̂] = (ni − 2) · (3p− 9p2 + 10p3 − 4p4) + nj · (p− 3p2 + 6p3 − 4p4) + (n− ni − nj) · (2p2 − 2p3).

This expression is indeed of order O(ni · p). Rewriting as a polynomial in p gives the result. ξ

2.2 Large Deviations

The implication of (2.3) is that the score gap grows linearly in ni. This is great progress, but one still needs
to gauge large deviations ξ̂ below the expected gap ξ. We interest ourselves in lower-tail deviations, as such
deviations close in the gap between the two distributions of ξ̂in and ξ̂out, making them less distinguishable. For
this specific purpose, the Bernstein bound comes into play, giving an exponentially decaying bound on such
deviations.
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Lemma 2.5. Let A be the event that any score gap ξ̂ deviates below the expected gap ξ by at least a linear
multiple α · ξ, for some α ∈ R. Assume further that the equivalence classes ni grow linearly in n. Then,

P[A] −→
n→∞

0.

Proof. First, if there are n2 scores, then there is at most n4 possible score gaps. We know from (2.3) that ξ̂
is a sum of independent random variables, bounded in absolute value by one. Furthermore, (2.4) tells us that
every term of the sum has bounded variance. Applying the Bernstein bound gives

P[A] ≤ n4 exp

(
− α2 · ξ2

2σ2 + 2/3 · α · ξ

)
−→
n→∞

n4 exp

(
− Θ(n2)

Θ(n · p) + Θ(n)

)
= 0. ξ

Remark. The statement might fail when ni does not grow linearly in n, for example, if ni = Θ(log(n)).

3 Main Results

To prove that the equivalence relation ∼ is noise stable, the strategy is to supply an algorithm A with an
asymptotically zero misclassification error.

3.1 The Algorithm

Let us recall the key protagonists of this construction. With x, i ∈ Xi and j ∈ Xj , the goal was to separate
members from non-members. In theory, we have explicit expressions for the expected gap ξ(ni, nj , p) with

variance Var[ξ] =: σ2(n, ni, nj , p). In practice, however, this requires knowledge of, ni, nj , namely the size of
each equivalence class sizes.

The idea is to establish a lower bound for the gap, regardless of nj . For this discussion, set ϵn ≤ nα ≤ n.

Lemma 3.1. Let ξ+(n, ni, p) = (ni − 2)− (3ni + ϵn− 6) · p+ (2n− 4) · p2. Then, ξ+ ≥ ξ.

Computation. The contribution of nj is negative, therefore we replace it with ϵn. ξ

Lemma 3.2. Let σ2
+(n, ni, p) be given by

(ni − 2) · (3p− 9p2 + 10p3 − 4p4) + n · (p− 3p2 + 6p3 − 4p4) + (n− ni − ϵn) · (2p2 − 2p3).

Then, σ2
+ ≥ σ2.

Computation. We replace nj with ϵn when the contribution is negative, and n when it is positive. ξ

Remark. The reason why we still get good estimates is that nj is linear in n, and always has a factor of
p = Θ(1/n).

The crucial insight is as follows. If the gap ξ̂ deviates below ξ+ by t, and ξ+ − ξ is positive (3.1), then ξ̂ has
surely deviated from ξ by at least t. From there we obtain t and may apply the Bernstein inequality,

P[ξ − ξ̂ ≥ t] ≤ exp

(
− t2

2σ2 + 2/3 · α · t

)
≤ exp

(
− t2

2σ2
+ + 2/3 · t

)
(by 3.2)

This is a proper sieve for non-members j. Next, computing the score matrix can be computationally expensive.
Let us propose a more sustainable solution.

Lemma 3.3. Let (X,∼′) be a noisy equivalence relation, and set A to be its adjacency matrix. Then,

S∼′ = A2 − 2 ·A+ I.

6



Proof. It is a well-known fact that the square of an adjacency matrix gives all paths i → k → j. This is very
close to s(i, j), with the exception that the score purely counts common neighbours. It counts every x for
which

i ∼ x ∧ x ∼ j. (x ̸= i ̸= j)

If x = i or x = j, the condition simplifies to i ∼ j. When i ̸= j, we have two different x that are counted, so
A2 differs from S∼′ by two. Otherwise, i = j and x is counted once, so the identity matrix accounts for the

over-subtraction. ξ

Our algorithm takes an adjacency matrix of size n× n, and a parameter p.

Input: (A, p)

n← An×n ▷ Get n
S ← A2 − 2 ·A+ In ▷ (3.3)
for each row x ∈ {1, . . . , n} do

s̃ = {s̃(x, k)}nk=1 ▷ Score row
s̃← sort(̃s) ▷ Sort descendingly
for each element k ∈ {1, . . . , n} do ▷ Assume ni = k and find best fit

σ2
+ ← Var(n, k, p) ▷ (3.2)

ξ+ ← ξ+(n, k, p) ▷ (3.1)

ξ̂ ← s̃(k)− s̃(k + 1) ▷ Measured gap

t← ξ+ − ξ̂ ▷ Deviation Value
if t < 0 then

continue ▷ Skip upper deviations
else

T (k)← Bernstein(σ2
+, t) ▷ Compute deviation probabilities

end if
end for
τ(x)← s̃(argk max T (k)) ▷ Least-unlikely approach

end for
Return: Thresholds τ

With the score thresholds in hand, one may easily recover (X,∼).� This is what we prove next.

3.2 Noise Stability of Equivalence Relations

As with our earlier discussions, we set p to be of order 1/n, and assume that the equivalence classes grow
linearly in n.

Theorem 3.4. Set A to be as described in Section 3.1. Then,

lim
n→∞

P[A(X,∼′) ̸= (X,∼)] = 0.

Proof of Theorem. It is enough to show that the distributions of ξ̂in, ξ̂out are almost surely distinguishable.
This is not difficult to show, since

(2.3) the expected score gap ξ = Θ(ni) = Θ(n) grows linearly,

(2.4) variance σ2 = Θ(n · p) = Θ(1) is finite,

(2.5) linear deviations from ξ are unlikely.

A misclassification is therefore not in question. ξ

�For a thorough discussion of the algorithm’s construction, please consult the Jupyter notebook https://

elshenawyom.github.io/projects/noise-sensitivity associated to this thesis.
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4 Closing Remarks

This thesis is not interesting for the classification result on equivalence classes, but rather for its introduction
of a large class of open problems to study. For instance, one might study the same problem on partial orders,
total orders, and perhaps even on unions of sets with different relations. Even in the case of an equivalence
relation, one may choose to apply noise asymmetrically, so that the graph of (X,∼) is one that is directed.

The notion of noise sensitivity on binary relations may also be improved, as it is not entirely obvious how one
might prove there is no recovery algorithm. It would be very interesting to find an example of a binary relation
∼ that is provably noise-insensitive. Whether the current definition allows for that is something to explore in
the future.

It remains surprising how many ways exist to attack the same question we proposed. For instance, the ques-
tion may be formulated in a purely information-theoretic language, or effectively solved via modularity and
community detection, or portrayed in a graph-theoretic setting. Regardless of the approach, the pursuit of this
question proves to be an intellectually rewarding experience.

4.1 Jupyter Notebook

A Jupyter notebook associated to this thesis may be found under

https://elshenawyom.github.io/projects/noise-sensitivity
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