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Complete Regular Maps (CRMs)

Definition

A (topological) map is an embedding of a simple graph in a
connected compact orientable surface such that the
complement of the image is a disjoint union of disks.

A map is regular if automorphisms of the embedding act
transitively on flags and complete if the graph is complete.

Example

A tetrahedron can be interpreted as the embedding of the
complete graph K4 on 4 vertices into the sphere.
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Pictures

Figure: The tetrahedron is a CRM, the dodecahedron is regular but
not complete.

(Figures stolen from Wikipedia.)
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Key examples

We obtain CRMs on K5 and K7 in the torus by quotienting out
the Gaussian and Eisenstein integers by prime ideals.

(a) K5 ↪→ Σ1 by Z[i ]/(1 + 2i)
(b) K7 ↪→ Σ1 by Z[ω]/(3 + ω)

Figure: Two complete regular maps into surfaces of genus one
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Motivation

Theorem (Biggs 1971)

A complete regular map with n vertices exists if and only if n is
a prime power.

Question

Can we generalize these constructions to obtain CRMs on
n = pf vertices?
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The construction

1 Carefully choose a surface X depending on n.

2 Construct a homomorphism φ : π1(X ) → Z[ζn−1].

3 For a prime p ⊆ Z[ζn−1] containing p, φ−1(p) is an index
n subgroup of π1(X ).

4 Lift loops in X along a covering map Y → X arising from
this subgroup to get an embedding of a graph in Y .
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A question

Moral of the story

We have a machine taking a prime ideal p of Z[ζn−1]
containing p to a CRM Mp with n vertices.

The first step in our work was to show this machine really does
give us a CRM on n vertices.

Question

Can we recover p from Mp? Put another way, do distinct ideals
yield distinct maps?

Answer

Yeah.
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Which CRMs does this give us?

Which CRMs arise from this construction?

Theorem (James and Jones)

Let p be an odd prime and set n = pf . Then there are
ϕ(n − 1)/f CRMs on n vertices (up to isomorphism).

Theorem

Let p be an odd prime and set n = pf . Then there are
ϕ(n − 1)/f prime ideals of Z[ζn−1] containing p.
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Classification of (most) CRMs

Distinct prime ideals give distinct maps, so:

Theorem

The function p 7→ Mp is a bijection between prime ideals of
Z[ζn−1] containing p and CRMs (up to isomorphism).
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Something Else to Study

Question

What is the action of the Galois group on CRMs?
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What is the Galois Group?

The Galois group Gal(Q(ζn−1)/Q) is the group of
automorphisms Q(ζn−1) → Q(ζn−1) fixing the elements of Q.
Visually, it can be represented like so:

Q

other stuff

σ

Q

stuff other
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What are dessins?

Definition

A Kn-dessin is a topological map whose underlying graph is
bipartite with n vertices on each side.

Figure: Bipartification of a CRM to obtain a dessin

Kn-dessins D give surfaces defined by polynomials over
Q(ζn−1), which yields an action of Gal(Q(ζn−1)/Q) on
Kn-dessins that we denote by Dσ for σ ∈ Gal(Q(ζn−1)/Q).
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Our results

Theorem

Given σ ∈ Gal(Q(ζn−1)/Q) and a prime p ⊆ Z[ζn−1] containing
p, there is an isomorphism

Dσ
p ≃ Dσp

of Kn-dessins.

So this tells us the two actions of Gal(Q(ζn−1)/Q) on
Kn-dessins are “equivalent”.
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Action I of the Galois group

Recall:

Prime ideals p ⊆ Z[ζn−1] give CRMs Mp.

These Mp induce Kn-dessins Dp.

Kn-dessins Dp give rise to surfaces that can be described
by algebraic equations over Q(ζn−1).

Gal(Q(ζn−1)/Q) acts on Kn-dessins by acting on the
coefficients of these equations.

Denote the action of σ ∈ Gal(Q(ζn−1)/Q) on Dp by Dσ
p ).
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Action II of the Galois group

Gal(Q(ζn−1)/Q) also permutes prime ideals of Z[ζn−1].

We saw earlier that prime ideals are in bijection with
CRMs on n vertices.

Thus, we obtain a second action of Gal(Q(ζn−1)/Q) on
Kn-dessins: σ ∈ Gal(Q(ζn−1)/Q) takes Dp to Dσp.
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Statement & Proof Sketch

Theorem

Given σ ∈ Gal(Q(ζn−1)/Q) and a prime p ⊆ Z[ζn−1] containing
p, there is an isomorphism

Dσ
p ≃ Dσp

of Kn-dessins.

Each σ ∈ Gal(Q(ζn−1)/Q) gives rise to an operation Hj on
dessins (called a Wilson operator).

Proof.

1 Jones, Streit & Wolfart (2009) proved Dσ
p ≃ HjDp.

2 We proved HjDp ≃ Dσp using additonal results from our
construction.

Thus Dσ
p ≃ Dσp.
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