
Mathematical Modeling Lab @ Constructor University

Problem 3

July 2, 2024

A Prelude

A joint-work between Omar Elshinawy & Mohammad Habibi-Bennani, this project was completed

in Spring of 2024 for a class in Mathematical Modeling at Constructor University, under Professor

Ivan Ovsyannikov and Mr Dzmitry Rumiantsau.

We start by importing the very basic libraries for this project.

[1]: import numpy as np

import matplotlib.pyplot as plt

Problem 3

The heat equation describes how heat di�uses through a given region over time. In two dimensions,

it is given by

∂u

∂t
= α

(
∂2u

∂x2
+

∂2u

∂y2

)
where u(t, x, y) represents the temperature at point (x, y) and time t, and α is the thermal di�usivity

constant that determines how quickly heat spreads through the material. We are given the following

boundary and initial conditions.

u(t, x, y) =

0, t = 0; x, y ∈ (0, 100)

0, x = 0; y ∈ (0, 100)

0, x = 100; y ∈ (0, 100)

200, y = 0; x ∈ [0, 100]

200, y = 100; x ∈ [0, 100]

A Prelude. To start, our system is de�ned on a [0, 100]× [0, 100]-sized rectangle. Thus it is clear

that

Lx = Ly = 100 are the dimensions of the simulation domain =⇒ nx = ny = 101 is the number of

grid points along the x- and y-directions.

[2]: Lx, Ly = 100, 100

nx, ny = Lx+1, Ly+1

Let us assume further that the thermal di�usivity constant α is equal to 3.

1

[3]: alpha = 3

a) Parameters We now make the following choices,

� dx = Lx
nx−1 , dy = Ly

ny−1 is the grid spacing in the x- and y-directions

� dt = 0.01 is the step size;

� nt = 1000 is the total number of steps.

[4]: dx = Lx / (nx - 1)

dy = Ly / (ny - 1)

dt = 0.01

nt = 1000

a) Initialization Now that we know the number data points in x, y, z we can de�ne u(t, x, y)
properly. It is easy to see that u = np.zeros((nt, nx, ny)) respects the number of points in each

variable.

[5]: u = np.zeros((nt, nx, ny))

c) Boundary Conditions As imposed by the problem, we have that

u(t, x, 0) = 200 (1)

u(t, x, Ly = 100) = 200 (2)

u(t, 0, y) = 0 (3)

u(t, 100, y) = 0 (4)

u(0, x, y) = 0 (5)

(6)

[6]: u[:, :, 0] = 200 # y = 0

u[:, :, -1] = 200 # y = 100 = Ly

u[:, 0, :] = 0 # x = 0

u[:, -1, :] = 0 # x = 100 = Lx

u[0, :, :] = 0 # t = 0

This is fairly straightforward, though one must pay great attention to e.g. the < and ≤ di�erences

in each condition.

d) Time-stepping Loop Here we update the temperature values using the �nite di�erence

method. The update formula for the temperature at each grid point (i, j) is

un+1
i,j = uni,j + α · dt ·

(
uni+1,j − 2uni,j + uni−1,j

dx2
+

uni,j+1 − 2uni,j + uni,j−1

dy2

)
. (7)

This discretization approximates the second-order derivatives in the heat equation. Boundary con-

ditions are enforced at each time step.

[7]: # Time-stepping loop

for n in range(0, nt-1):

2

u[n+1, 1:-1, 1:-1] = (u[n, 1:-1, 1:-1] +

alpha * dt * (

(u[n, 2:, 1:-1] - 2 * u[n, 1:-1, 1:-1] + u[n, :-2,

↪→1:-1]) / dx**2 +

(u[n, 1:-1, 2:] - 2 * u[n, 1:-1, 1:-1] + u[n, 1:

↪→-1, :-2]) / dy**2

))

Boundary conditions are already enforced by initialization

u[n+1, :, 0] = 200

u[n+1, :, -1] = 200

u[n+1, 0, :] = 0

u[n+1, -1, :] = 0

e) Plot We are ready to plot the temperature distribution at the �nal time step using a contour

plot. - meshgrid function creates a grid for plotting; - contourf generates nicely �lled contour

plots;

We even add a nice hot color to visually represent the temperature distribution.

[8]: # Plot the final temperature distribution

X, Y = np.meshgrid(np.linspace(0, Lx, nx), np.linspace(0, Ly, ny))

plt.figure(figsize=(8, 6))

plt.contourf(X, Y, u[-1, :, :], 20, cmap='hot')

plt.colorbar()

plt.title('Temperature distribution at t = {}'.format(nt*dt))

plt.xlabel('x')

plt.ylabel('y')

plt.show()

3

It looks like we just solved a second-order PDEs numerically. You can of course feel free to play

with the parameters for yourself and see the e�ect it bears on the system. The authors highly

recommend this, as the results are, to a great extent, visually appealing. □

4

