[1]:

[2]:

Mathematical Modeling Lab @ Constructor University
Problem 3
July 2, 2024

A Prelude

A joint-work between Omar Elshinawy & Mohammad Habibi-Bennani, this project was completed
in Spring of 2024 for a class in Mathematical Modeling at Constructor University, under Professor
Ivan Ovsyannikov and Mr Dzmitry Rumiantsau.

We start by importing the very basic libraries for this project.

import numpy as np
import matplotlib.pyplot as plt

Problem 3

The heat equation describes how heat diffuses through a given region over time. In two dimensions,
it is given by

Ou_ (Pu 0%u
ot~ “\az2 T 9,2

where u(t, x,y) represents the temperature at point (z,y) and time ¢, and « is the thermal diffusivity
constant that determines how quickly heat spreads through the material. We are given the following
boundary and initial conditions.

0, t=0, x,y€(0,100)
0, z=0; y € (0,100)
u(t,z,y) =<0, x =100; y € (0,100)
200, y=0; z € [0,100]
200, y=100; € [0,100]

A Prelude. To start, our system is defined on a [0, 100] x [0, 100]-sized rectangle. Thus it is clear
that

Lz = Ly = 100 are the dimensions of the simulation domain = nx = ny = 101 is the number of
grid points along the x- and y-directions.

Lx, Ly = 100, 100
Lx+1, Ly+1

nx, ny

Let us assume further that the thermal diffusivity constant « is equal to 3.

[3]:

[4]:

[5]:

[6]:

[7]1:

alpha = 3

a) Parameters We now make the following choices,

o dr = m];fl, Y= nﬁl is the grid spacing in the x- and y-directions

e dt = 0.01 is the step size;
e nt = 1000 is the total number of steps.

dx = Lx / (nx - 1)
dy = Ly / (ny - 1)
dt = 0.01
nt = 1000

a) Initialization Now that we know the number data points in z,y,z we can define u(t,z,y)
properly. It is easy to see that u = np.zeros({(nt, nx, ny)) respects the number of points in each
variable.

u = np.zeros((nt, nx, ny))

¢) Boundary Conditions As imposed by the problem, we have that

u(t, z,0) = 200
u(t,z, Ly = 100) = 200
u(t,0,y) =0
u(t,100,y) =0
u(0,z,y) =0

ul:, =, 0] =200 #y =0

ul:, :, -11 = 200 #y = 100 = Ly
ul:, 0, :1] =0 # =z =20

ul:, -1, :1 =0 # =z

ul0, :, 1] =0 # t =

This is fairly straightforward, though one must pay great attention to e.g. the < and < differences
in each condition.

d) Time-stepping Loop Here we update the temperature values using the finite difference
method. The update formula for the temperature at each grid point (,7) is

n n n n n n
n 17) 17 >, 1 . >, 1
uzljl—uzj—{—adt(P ©J Lok TV %J 2J 2,]) (7)

dz? dy?

This discretization approximates the second-order derivatives in the heat equation. Boundary con-
ditions are enforced at each time step.

Time-stepping loop
for n in range(0, nt-1):

[8]:

uln+1, 1:-1, 1:-1] = (uln, 1:-1, 1:-1] +
alpha * dt * (
(uln, 2:, 1:-1] - 2 * u[n, 1:-1, 1:-1] + uln, :-2,,
—1:-11) / dx**x2 +
(uln, 1:-1, 2:]1 - 2 * uln, 1:-1, 1:-1] + uln, 1:
-1, :=2]1) / dy**2
))
Boundary conditions are already enforced by initialization
uln+1, :, 0] = 200
uln+l, :, -1] = 200
uln+1, 0, :] =0
uln+l, -1, :1 =0

e) Plot We are ready to plot the temperature distribution at the final time step using a contour
plot. - meshgrid function creates a grid for plotting; - contourf generates nicely filled contour
plots;

We even add a nice hot color to visually represent the temperature distribution.

Plot the final temperature distribution

X, Y = np.meshgrid(np.linspace(0, Lx, nx), np.linspace(0, Ly, ny))
plt.figure(figsize=(8, 6))

plt.contourf(X, Y, ul-1, :, :], 20, cmap='hot')

plt.colorbar()

plt.title('Temperature distribution at t = {}'.format(nt*dt))
plt.xlabel('x"')

plt.ylabel('y")

plt.show()

Temperature distribution at t = 10.0

100 - —
- 180
80
- 150
60 - 120
==
40 -
20
0 -
0 20 40 60 80 100

It looks like we just solved a second-order PDEs numerically. You can of course feel free to play
with the parameters for yourself and see the effect it bears on the system. The authors highly
recommend this, as the results are, to a great extent, visually appealing. [

