Mathematical Modeling Lab @ Constructor University
Problem 2
June 15, 2024

A Prelude

A joint-work between Omar Elshinawy & Mohammad Habibi-Bennani, this project was completed
in Spring of 2024 for a class in Mathematical Modeling at Constructor University, under Professor
Ivan Ovsyannikov and Mr Dzmitry Rumiantsau.

We start by importing the very basic libraries for this project.

[1]: import numpy as np
import matplotlib.pyplot as plt

Problem 2. We set ¢ = 0.25, and proceed with © = v

z4+05z24+2=0

which once again yields

d d P =
a? T a (i) :{Z:io.w—x

that is a first-order system of equations. We can represent this in python as follows,

[2]: def damped_oscillator_2(t, y):
X, V=Y
return [v, -0.5%v - x]

given

[3]: x 0=1; x9=0
and a timeframe
t€[0,9].

[4]: tframe = (0,9)

[5]:

[6]:

[7]:

2.1 The Shooting Method.

This method is useful for boundary value problems like our problem here. The idea is to use a
guess for the initial velocity vg, coupled with the given x(0) = 1 to attempt solving the system as
an intermediate value problem. Here is the recipe:

1. shoot for a guess v(0);
2. solve the IVP using z(0),v(0);
3. check the solution #(9) versus x(9);

if £(9) does not meet the boundary condition z(9) then clearly it is incorrect so adjust the guess
and re-iterate.

We define the shooting function for an initial guess vy, and solve it as an intermediate value problem.
We use the solver solve_ivp specifically for that purpose.

from scipy.integrate import solve_ivp

Let us now rigorously formulate the previous ideas.

def shooting_function(v_0):
sol = solve_ivp(damped_oscillator_2, tframe, [x_0, v_0], t_eval=np.
—linspace(0, 9, 1000))

1. sol.y[0, t] gives z(t)
2. sol.yl[0, -1] gives z(9), as -1 returns the last value in the time array

return sol.y[0, -1] - x_9

For the guess vg, our function returns the value of

#(9) — 2(9).

We want this to be zero. This is due to the fact that

z(9) =2(9) ifandonlyif 2(9)—=x(9)=0.

Let us worry less about solving this equation. For this purpose, we summon the root_scalar
method to find us the right guess.

from scipy.optimize import root_scalar

Find the guess v_0 which makes the equation 0.
root_scalar(shooting_function, bracket=[-10, 10], method='brentq')
sol.root

sol
v_0

print(£f"v_0 = {v_0}")

v_0 = 0.8741061753595658

We can now use the correct vy to solve the Intermediate Value Problem.

[(8]: # Solve the IVP with the initial displacement + correct initial wvelocity
sol = solve_ivp(damped_oscillator_2, tframe, [x_0, v_0], t_eval=np.linspace(0,,
-9, 1000))

extract time wvalues
t_shooting = sol.t

#extract = values
x_shooting = sol.y[0]

#extract v values
v_shooting = sol.yl[1]

Check out the shooting result!
#print (sol)

It now remains to “shoot our shot” with the results.

[9]: plt.figure(figsize=(12, 4,))

plt.plot(t_shooting, x_shooting, color='blue', label='Displacement')
plt.plot(t_shooting, v_shooting, color='red', label='Velocity')

plt.xlabel('t"')

plt.title('Shooting Method - Solution Curve')
plt.legend ()

plt.grid(True)

plt.show()

Shooting Method - Solution Curve

—— Displacement
1.0 4 — \elocity

0.5

0.0

—0.5

-1.0 - T

Bullseye. [

2.2 The Finite Difference Method.

0) For our differential equation

T+052+x2=0

with boundary conditions $ x(0) = 1 “and ~ x(9) = 0,$ the goal is to summon the power of Linear
Algebra to find values that approximate the function x(t). * We discretize the time domain [0, 9]
into n partitions t;.

* With n such ¢; at hand, we have n unknown variables x; := x(¢;) which we want to find the value
for.

* Therefore, it only makes sense to demand n (linearly independent) equations in n variables.

We show that each equation is of the form

1 02 —2 1 0.2
O-J;0+---+0-xi_2+(ﬁ—o—h5)~xi_1+(ﬁ+1)-xi+(ﬁ+¥)'xi+1+0-x¢+2+‘--+0'xn =0

where x; are the displacement at time ¢;. The authors personally think this method is very creative
in the way these equations are obtained. Not to cause confusion, we will use the following definitions
interchangeabely.

tiil = ti +h & €Ty ‘= ZL‘(tl)

I) We start by discretizing the time domain. Divide the interval [0,9] into N + 1 subintervals to
get N interior points. The time step h is therefore

2 9

N+1 = N+1

Thus, the total number of points, including the boundary points, will be N + 2. This is okay,
however, as we already know the values of x¢ and x4 as initial conditions. This is consistent with
the N unknown variables z; for ¢ € {1,..., N}, which are the interior points. We shall reference
them using the same term in the code.

IT) We recall that the Taylor expansion of x(t; += h) is given by

2 2

Z‘(tzq_l) = x(ti—i—h) = x(tz)+hx(t1)+%x(tz)+(’)(h3) (l)x(ti_l) = x(ti—h) = l‘(tz‘)—hi’(ti)—i-%i'(ti)-i-(/)(hg)

(1) + (2) is surprisingly not 3, but it yields (3) as we see below.

Ti41 — 2x; + Ti—1
~ (3 h2’l 3 (3)

Z’N

(2)

More surprising is the fact that (1) —(2) indeed gives (—1), that is the last equation (4) in our array
of equations for this construction.

Tip1 — Ti—
ITI) Now, recall that the differential equation was given by Z + 0.5& + = = 0 so we can use (3), (4)

to approximate the solution of & + 0.5 + z = 0.

Tip1 — 2% + i1 Tipl — Ti—1

2 +0.5- o7 + x; = 0.
With some simple algebra, we obtain that
1 0.25 -2 1 0.25
(3= =) @i+ (7 +1) mi+ (5 + =) @iy =0
which are all the coefficients we need. Notice that we can write
1 0.25 -2 1 025
0214 +0-2ig+ (35— =) T 1+(h2 +1) @it 5+ 5-) a1 +0-Tiga+- 4020 =0

so that in each row only three coeffients are non-zero, namely x;_1, x;, x;41. This makes the coeffi-

cient matrix A tri-diagonal, which is crucial for how we construct A € RV*Y in our code.

IV) Finally, notice that the variables g, x 41 are included in the first and last equations b[0] and
b[-1]. The catch is that our system is defined for z1,...,x,. We need all equations to be of the
form

a1z + agxe + - - + apxy, = by.

Let us look at the two equations that include xg, x 1. First,

1 025 P 1025
Ge =3) mot Gz 1)t (g + =) w2 =0
is equivalent to
2 1025 1 025
(ﬁ+1).$1+(ﬁ+7)'x2:_(ﬁ_7) Zo (a)
Similarly, we get that
1 025 2 1025
(ﬁ_T) a:N1+(h2 1) - mN+(h2+ h)-a?N+1:0
becomes 1 025 2 1 025
(=) evat (g + 1) aw = (5 + =) -av ()

This is indeed successful, as we can make use of the boundary conditions xg, xyy1 which are
(respectively) (0) = 1,2(9) = 0 in our problem here to compute b[0] and b[-1] = b[N] without
any ambiguity.

[10]: def finite_difference(N, t_span, x_0, x_nl, zeta=0.25):
wnttealesing

h = (t_span[1] - t_span[0]) / (N + 1)

t = np.linspace(t_span[0], t_span[1], N + 2)
matriz 4

A = np.zeros((N, N))

n-dimensional solution vector

b = np.zeros(N)

for each row (equation)
for i in range(N):
avotds out of bounds error
if i > 0:
Ali, i-1] =1 / h*x2 - 0.25 / h # insert coefficient of z_{i-1}
Ali, i1 = -2 / h**2 + 1 # insert coefficient of {z_i}
avotds out of bounds error
if 1 < N - 1:
Ali, i+1] =1 / h**2 + 0.25 / h # 4nsert coefficient of z_{i+1}

treating edge solutions
b[0] -= x_0 * (1/h**2 - 0.25/h)
b[-1] -= x_nl *(1/h*x2 + 0.25/h)

x_interior = np.linalg.solve(4, b)
x = np.concatenate([[x_0], x_interior, [x_n1]])
return t, x

We have successfully derived the finite differencing method, so we might as well put this nice
construction into immediate use. We set the number of partitions,

[11]: N = 100
then simply call the function with the correct parameters.
[12]: t_finite_diff, x_finite_diff = finite_difference(N, tframe, x_0, x_9)
To get more creative, we use the values x_finite_diff to find approximations to v(¢). This is made

precise by means of equation (4),

ii ~ Li41 2_hxi—1 (4)

as well as two more equations, namely the notorious

. x(ti + h) — x(tz) Tyl — T

not to mention the less notorious but fairly obvious

. xt) —x(ti—h) m—xi
i~ - =: . (6).

This is merely a change of variable so to say.

[13]: def compute_velocity(t_finite_diff, x_finite_diff):

Timestep ts fixzed
h = t_finite_diff[1] - t_finite_diff[0]

Give 1t structure like z_finite diff
v_finite_diff = np.zeros_like(x_finite_diff)

Equation (4) for interior points
v_finite_diff[1:-1] = (x_finite_diff[2:] - x_finite_diff[:-2]) / (2 * h)

Treating Edge Solutions

Equation (5) for the first point
v_finite_diff[0] = (x_finite_diff([1] - x_finite_diff[0]) / h

Equation (6) for the last point
v_finite_diff[-1] = (x_finite_diff[-1] - x_finite_diff[-2]) / h

return v_finite_diff

Now let us derive the array of values for v,

[14]: v_finite_diff = compute_velocity(t_finite_diff, x_finite_diff)
Finally, a visually aesthetic curve of displacement versus time.

[16]: plt.figure(figsize=(12, 4,))

plt.plot(t_finite_diff, x_finite_diff, label='Displacement', color='blue')
plt.plot(t_finite_diff, v_finite diff, label='Velocity', color='red')
plt.xlabel('t"')

plt.title('Finite Differencing - Solution Curve')

plt.legend()

plt.grid(True)

plt.show()

Finite Differencing - Solution Curve

—— Displacement
10 — \elocity
0.5
0.0
—0.5 4
-1.0 T T T T T

Ladies and Gentlemen, Finite differencing! [J
2.3 scipy.integrate.solve_bvp

This is fairly straightforward.

[16]: from scipy.integrate import solve_bvp

Start by discretize the interval [0,9]. Let us not forget to initialise the solution array y = [x, t]
with trivial values as well.

[17]: t = np.linspace(0, 9, 100); y = np.zeros((2, t.size))

Recall the initial conditions z(0) = 1 & z(9) = 0. We pass them down in the form

2(0)—1=0 & =x(9)—0=0.

Similar to the shooting function, the task is to minimise this residual of functions all the way to
zero, so that the solution Z(0) = z(0).

[18]: sol = solve_bvp(damped_oscillator_2,
lambda y_O, y_n: [y_0[0] - 1, y_n[0] - O],
t, y)
#print (sol)

Next, let us extract the data.

[19]: t_bvp = sol.x
x_bvp = sol.y[0]
v_bvp = sol.y[1]

We conclude this presentation with the following plot,

[20]: plt.figure(figsize=(12, 4,))
plt.plot(t_bvp, x_bvp, label='Displacement', color='blue')

plt.plot(t_bvp, v_bvp, label='Velocity', color='red')

plt.xlabel('t"')

plt.title('scipy.solve_bvp - Solution Curve')
plt.legend()

plt.grid(True)

plt.show()

scipy.solve bvp - Solution Curve

1.0 4

0.5

0.0

—0.5

—-1.0 -

— Displacement
— \kelocity

Sieht gut aus. [J

