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A Prelude

A joint-work between Omar Elshinawy & Mohammad Habibi-Bennani, this project was completed

in Spring of 2024 for a class in Mathematical Modeling at Constructor University, under Professor

Ivan Ovsyannikov and Mr Dzmitry Rumiantsau.

We start by importing the very basic libraries for this project.

[1]: import numpy as np

import matplotlib.pyplot as plt

Problem 2. We set ζ = 0.25, and proceed with ẋ = v

ẍ+ 0.5ẋ+ x = 0

which once again yields

d

dt
y :=

d

dt

(x
v

)
=

{
ẋ = v

v̇ = −0.5v − x

that is a �rst-order system of equations. We can represent this in python as follows,

[2]: def damped_oscillator_2(t, y):

x, v = y

return [v, -0.5*v - x]

given

x(0) = 1, x(9) = 0

[3]: x_0 = 1; x_9 = 0

and a timeframe

t ∈ [0, 9].

[4]: tframe = (0,9)
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2.1 The Shooting Method.

This method is useful for boundary value problems like our problem here. The idea is to use a

guess for the initial velocity v0, coupled with the given x(0) = 1 to attempt solving the system as

an intermediate value problem. Here is the recipe:

1. shoot for a guess v(0);
2. solve the IVP using x(0), v(0);
3. check the solution x̃(9) versus x(9);

if x̃(9) does not meet the boundary condition x(9) then clearly it is incorrect so adjust the guess

and re-iterate.

We de�ne the shooting function for an initial guess v0, and solve it as an intermediate value problem.

We use the solver solve_ivp speci�cally for that purpose.

[5]: from scipy.integrate import solve_ivp

Let us now rigorously formulate the previous ideas.

[6]: def shooting_function(v_0):

sol = solve_ivp(damped_oscillator_2, tframe, [x_0, v_0], t_eval=np.

↪→linspace(0, 9, 1000))

# 1. sol.y[0, t] gives x(t)

# 2. sol.y[0, -1] gives x(9), as -1 returns the last value in the time array

return sol.y[0, -1] - x_9

For the guess v0, our function returns the value of

x̃(9)− x(9).

We want this to be zero. This is due to the fact that

x(9) = x(9) if and only if x̃(9)− x(9) = 0.

Let us worry less about solving this equation. For this purpose, we summon the root_scalar

method to �nd us the right guess.

[7]: from scipy.optimize import root_scalar

# Find the guess v_0 which makes the equation 0.

sol = root_scalar(shooting_function, bracket=[-10, 10], method='brentq')

v_0 = sol.root

print(f"v_0 = {v_0}")

v_0 = 0.8741061753595658
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We can now use the correct v0 to solve the Intermediate Value Problem.

[8]: # Solve the IVP with the initial displacement + correct initial velocity

sol = solve_ivp(damped_oscillator_2, tframe, [x_0, v_0], t_eval=np.linspace(0, 

↪→9, 1000))

# extract time values

t_shooting = sol.t

#extract x values

x_shooting = sol.y[0]

#extract v values

v_shooting = sol.y[1]

# Check out the shooting result!

#print(sol)

It now remains to �shoot our shot� with the results.

[9]: plt.figure(figsize=(12, 4,))

plt.plot(t_shooting, x_shooting, color='blue', label='Displacement')

plt.plot(t_shooting, v_shooting, color='red', label='Velocity')

plt.xlabel('t')

plt.title('Shooting Method - Solution Curve')

plt.legend()

plt.grid(True)

plt.show()

Bullseye. □
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2.2 The Finite Di�erence Method.

0) For our di�erential equation

ẍ+ 0.5ẋ+ x = 0

with boundary conditions $ x(0) = 1 ~and ~ x(9) = 0,$ the goal is to summon the power of Linear

Algebra to �nd values that approximate the function x(t). * We discretize the time domain [0, 9]
into n partitions ti.
* With n such ti at hand, we have n unknown variables xi := x(ti) which we want to �nd the value

for.

* Therefore, it only makes sense to demand n (linearly independent) equations in n variables.

We show that each equation is of the form

0 ·x0+ · · ·+0 ·xi−2+
( 1

h2
− 0.25

h

)
·xi−1+

(−2

h2
+1

)
·xi+

( 1

h2
+

0.25

h

)
·xi+1+0 ·xi+2+ · · ·+0 ·xn = 0

where xi are the displacement at time ti. The authors personally think this method is very creative

in the way these equations are obtained. Not to cause confusion, we will use the following de�nitions

interchangeabely.

ti±1 := ti ± h & xi := x(ti)

ẋi := ẋ(ti) & ẍi := ẍ(ti)

I) We start by discretizing the time domain. Divide the interval [0, 9] into N + 1 subintervals to

get N interior points. The time step h is therefore

h =
tN+1 − t0
N + 1

:=
9

N + 1
.

Thus, the total number of points, including the boundary points, will be N + 2. This is okay,

however, as we already know the values of x0 and xN+1 as initial conditions. This is consistent with

the N unknown variables xi for i ∈ {1, . . . , N}, which are the interior points. We shall reference

them using the same term in the code.

II) We recall that the Taylor expansion of x(ti ± h) is given by

x(ti+1) := x(ti+h) = x(ti)+hẋ(ti)+
h2

2
ẍ(ti)+O(h3) (1)x(ti−1) := x(ti−h) = x(ti)−hẋ(ti)+

h2

2
ẍ(ti)+O(h3) (2)

(1) + (2) is surprisingly not 3, but it yields (3) as we see below.

ẍi ≈
xi+1 − 2xi + xi−1

h2
(3)
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More surprising is the fact that (1)− (2) indeed gives (−1), that is the last equation (4) in our array

of equations for this construction.

ẋi ≈
xi+1 − xi−1

2h
(4)

III) Now, recall that the di�erential equation was given by ẍ+ 0.5ẋ+ x = 0 so we can use (3), (4)
to approximate the solution of ẍ+ 0.5ẋ+ x = 0.

xi+1 − 2xi + xi−1

h2
+ 0.5 · xi+1 − xi−1

2h
+ xi = 0.

With some simple algebra, we obtain that

( 1

h2
− 0.25

h

)
· xi−1 +

(−2

h2
+ 1

)
· xi +

( 1

h2
+

0.25

h

)
· xi+1 = 0

which are all the coe�cients we need. Notice that we can write

0 ·x1+ · · ·+0 ·xi−2+
( 1

h2
− 0.25

h

)
·xi−1+

(−2

h2
+1

)
·xi+

( 1

h2
+

0.25

h

)
·xi+1+0 ·xi+2+ · · ·+0 ·xn = 0

so that in each row only three coe�ents are non-zero, namely xi−1, xi, xi+1. This makes the coe�-

cient matrix A tri-diagonal, which is crucial for how we construct A ∈ RN×N in our code.

IV) Finally, notice that the variables x0, xN+1 are included in the �rst and last equations b[0] and

b[-1]. The catch is that our system is de�ned for x1, . . . , xn. We need all equations to be of the

form

a1x1 + a2x2 + · · ·+ anxn = bk.

Let us look at the two equations that include x0, xN+1. First,

( 1

h2
− 0.25

h

)
· x0 +

(−2

h2
+ 1

)
· x1 +

( 1

h2
+

0.25

h

)
· x2 = 0

is equivalent to (−2

h2
+ 1

)
· x1 +

( 1

h2
+

0.25

h

)
· x2 = −

( 1

h2
− 0.25

h

)
· x0. (a)

Similarly, we get that( 1

h2
− 0.25

h

)
· xN−1 +

(−2

h2
+ 1

)
· xN +

( 1

h2
+

0.25

h

)
· xN+1 = 0

becomes ( 1

h2
− 0.25

h

)
· xN−1 +

(−2

h2
+ 1

)
· xN = −

( 1

h2
+

0.25

h

)
· xN+1. (b)

This is indeed successful, as we can make use of the boundary conditions x0, xN+1 which are

(respectively) x(0) = 1, x(9) = 0 in our problem here to compute b[0] and b[-1] = b[N] without

any ambiguity.

5



[10]: def finite_difference(N, t_span, x_0, x_n1, zeta=0.25):

# initialising

h = (t_span[1] - t_span[0]) / (N + 1)

t = np.linspace(t_span[0], t_span[1], N + 2)

# matrix A

A = np.zeros((N, N))

# n-dimensional solution vector

b = np.zeros(N)

# for each row (equation)

for i in range(N):

# avoids out of bounds error

if i > 0:

A[i, i-1] = 1 / h**2 - 0.25 / h # insert coefficient of x_{i-1}

A[i, i] = -2 / h**2 + 1 # insert coefficient of {x_i}

# avoids out of bounds error

if i < N - 1:

A[i, i+1] = 1 / h**2 + 0.25 / h # insert coefficient of x_{i+1}

# treating edge solutions

b[0] -= x_0 * (1/h**2 - 0.25/h)

b[-1] -= x_n1 *(1/h**2 + 0.25/h)

x_interior = np.linalg.solve(A, b)

x = np.concatenate([[x_0], x_interior, [x_n1]])

return t, x

We have successfully derived the �nite di�erencing method, so we might as well put this nice

construction into immediate use. We set the number of partitions,

[11]: N = 100

then simply call the function with the correct parameters.

[12]: t_finite_diff, x_finite_diff = finite_difference(N, tframe, x_0, x_9)

To get more creative, we use the values x_finite_diff to �nd approximations to v(t). This is made

precise by means of equation (4),

ẋi ≈
xi+1 − xi−1

2h
(4)

as well as two more equations, namely the notorious

ẋi ≈
x(ti + h)− x(ti)

h
=:

xi+1 − xi
h

(5)

not to mention the less notorious but fairly obvious
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ẋi ≈
x(ti)− x(ti − h)

h
=:

xi − xi−1

h
(6).

This is merely a change of variable so to say.

[13]: def compute_velocity(t_finite_diff, x_finite_diff):

# Timestep is fixed

h = t_finite_diff[1] - t_finite_diff[0]

# Give it structure like x_finite diff

v_finite_diff = np.zeros_like(x_finite_diff)

# Equation (4) for interior points

v_finite_diff[1:-1] = (x_finite_diff[2:] - x_finite_diff[:-2]) / (2 * h)

# Treating Edge Solutions #

# Equation (5) for the first point

v_finite_diff[0] = (x_finite_diff[1] - x_finite_diff[0]) / h

# Equation (6) for the last point

v_finite_diff[-1] = (x_finite_diff[-1] - x_finite_diff[-2]) / h

return v_finite_diff

Now let us derive the array of values for v,

[14]: v_finite_diff = compute_velocity(t_finite_diff, x_finite_diff)

Finally, a visually aesthetic curve of displacement versus time.

[15]: plt.figure(figsize=(12, 4,))

plt.plot(t_finite_diff, x_finite_diff, label='Displacement', color='blue')

plt.plot(t_finite_diff, v_finite_diff, label='Velocity', color='red')

plt.xlabel('t')

plt.title('Finite Differencing - Solution Curve')

plt.legend()

plt.grid(True)

plt.show()
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Ladies and Gentlemen, Finite di�erencing! □

2.3 scipy.integrate.solve_bvp

This is fairly straightforward.

[16]: from scipy.integrate import solve_bvp

Start by discretize the interval [0, 9]. Let us not forget to initialise the solution array y = [x, t]

with trivial values as well.

[17]: t = np.linspace(0, 9, 100); y = np.zeros((2, t.size))

Recall the initial conditions x(0) = 1 & x(9) = 0. We pass them down in the form

x(0)− 1 = 0 & x(9)− 0 = 0.

Similar to the shooting function, the task is to minimise this residual of functions all the way to

zero, so that the solution x̃(0) = x(0).

[18]: sol = solve_bvp(damped_oscillator_2,

lambda y_0, y_n: [y_0[0] - 1, y_n[0] - 0],

t, y)

#print(sol)

Next, let us extract the data.

[19]: t_bvp = sol.x

x_bvp = sol.y[0]

v_bvp = sol.y[1]

We conclude this presentation with the following plot,

[20]: plt.figure(figsize=(12, 4,))

plt.plot(t_bvp, x_bvp, label='Displacement', color='blue')
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plt.plot(t_bvp, v_bvp, label='Velocity', color='red')

plt.xlabel('t')

plt.title('scipy.solve_bvp - Solution Curve')

plt.legend()

plt.grid(True)

plt.show()

Sieht gut aus. □
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