FIBRATIONS & APPLICATIONS TO COMPUTATIONS OF HIGHER HOMOTOPY GROUPS

Omar Elshinawy

Algebraic Topology Spring 2024

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

OVERVIEW

STATEMENT

The Hopf Fibration

The Path-Loop Fibration

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

THE BIG THEOREM

CONCLUSION

MAIN RESULTS

THEOREM (THE PATH-LOOP FIBRATION) $\pi_n(\Omega X) \cong \pi_{n+1}(X)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

THEOREM (THE HOPF FIBRATION) $\pi_n(S^3) \cong \pi_n(S^2)$ for $n \ge 3$

The Hopf Fibration

THEOREM (THE HOPF FIBRATION) $\pi_n(S^3) \cong \pi_n(S^2)$ for $n \ge 3$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

1. FIBRATIONS INDUCE LONG EXACT SEQUENCES

THEOREM

Let $p: E \to_p B$ be a Serre fibration. Choose $b_0 \in B$ and $x_0 \in F$ such that $p^{-1}(b_0) = x_0$. Then, there exists a map

$$p_*: \pi_n(E, F, x_0) \to \pi_n(B, b_0)$$

that is an isomorphism for all $n \geq 1$.

$\begin{array}{l} \text{COROLLARY} \\ B \text{ path-connected} \implies \text{Long Exact Sequence} \end{array}$

$$\cdots \to \pi_n(F, x_0) \to \pi_n(E, x_0) \to \pi_n(B, b_0) \to \pi_{n-1}(F, x_0) \to \dots$$

うして ふゆ く は く は く む く し く

2. Higher Homotopy Groups of S^1

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\begin{aligned} & \text{Proposition} \\ & \pi_n(S^1) = \begin{cases} \mathbb{Z} & n = 1 \\ 0 & n \geq 2 \end{cases} \end{aligned}$$

3. Lemma on Exact Sequences

DEFINITION (EXACT SEQUENCE)

A family of groups $\{G_i\}_{i=1}^n$, a family of homomorphisms $\{f_i\}_{i=1}^{n-1}$

$$G_1 \to_{f_1} G_2 \to_{f_2} \cdots \to_{f_{n-1}} G_n$$

Sequence is exact \implies for all $i \in \{1, \ldots, n-1\}$,

$$\operatorname{im}(f_i) = \ker(f_{i+1})$$

Lemma

$$0 \rightarrow_{f_1} G_1 \rightarrow_{f_2} G_2 \rightarrow_{f_3} 0 \text{ is exact } \iff G_1 \cong G_2.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

FIRST MAIN RESULT

THEOREM $\pi_n(S^3) \cong \pi_n(S^2) \text{ for } n \ge 3$ *Proof.* This is a Fibration

$$S^1 \hookrightarrow S^3 \to_\eta S^2$$

1. Fibrations induce exact sequences

$$\dots \to \pi_n(S^1) \to \pi_n(S^3) \to \pi_n(S^2) \to \pi_{n-1}(S^1) \to \dots$$
2. $\pi_n(S^1) = 0$ for $n \ge 2$
 $\dots \to 0 \to \pi_n(S^3) \to \pi_n(S^2) \to 0 \to \dots$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

3. Isomorphism of groups

The Path-loop Fibration

THEOREM (THE PATH-LOOP FIBRATION) $\pi_n(\Omega X) \cong \pi_{n+1}(X)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

1. FIBRATIONS INDUCE LONG EXACT SEQUENCES

THEOREM

Let $p: E \to_p B$ be a Serre fibration. Choose $b_0 \in B$ and $x_0 \in F$ such that $p^{-1}(b_0) = x_0$. Then, there exists a map

$$p_*: \pi_n(E, F, x_0) \to \pi_n(B, b_0)$$

that is an isomorphism for all $n \geq 1$.

$\begin{array}{l} \text{COROLLARY} \\ B \text{ path-connected} \implies \text{Long Exact Sequence} \end{array}$

$$\cdots \to \pi_n(F, x_0) \to \pi_n(E, x_0) \to \pi_n(B, b_0) \to \pi_{n-1}(F, x_0) \to \dots$$

うして ふゆ く は く は く む く し く

2. The Path Space is Contractible

DEFINITION (Homotopy of Spaces) $X \simeq Y$ if there exists

$$f:X\to Y \And g:Y\to X$$

such that $g \circ f \simeq id_X$ and $f \circ g \simeq id_Y$. A **contractible** space is homotopy equivalent to a point.

うして ふゆ く は く は く む く し く

LEMMA PX is contractible.

LEMMA PX is contractible $\iff \pi_n(PX) = 0$

3. Lemma on Exact Sequences

DEFINITION (EXACT SEQUENCE)

A family of groups $\{G_i\}_{i=1}^n$, a family of homomorphisms $\{f_i\}_{i=1}^{n-1}$

$$G_1 \to_{f_1} G_2 \to_{f_2} \cdots \to_{f_{n-1}} G_n$$

Sequence is exact \implies for all $i \in \{1, \ldots, n-1\}$,

$$\operatorname{im}(f_i) = \ker(f_{i+1})$$

Lemma

$$0 \rightarrow_{f_1} G_1 \rightarrow_{f_2} G_2 \rightarrow_{f_3} 0 \text{ is exact } \iff G_1 \cong G_2.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Second Main Result

THEOREM $\pi_n(\Omega X) \cong \pi_{n+1}(X)$ *Proof.* This is a Fibration

$$\Omega_b X \hookrightarrow P(X, b) \to X_b$$

1. Fibrations induce exact sequences

$$\cdots \to \pi_{n+1}(P(X,b)) \to \pi_{n+1}(X) \to \pi_n(\Omega X) \to \pi_n(P(X,b)) \to \dots$$

2. PX contractible $\iff \pi_n(PX) = 0$

$$\cdots \to 0 \to \pi_{n+1}(X) \to \pi_n(\Omega X) \to 0 \to \dots$$

3. Isomorphism of groups

ċ	Þ	• 🗗	Þ	•	æ	Þ	•	æ	Þ	÷.	500

THE LIFTING PROBLEM

DEFINITION $p: E \to B$ has the homotopy lifting property wrt X if

1. for all maps $f: X \to E$

2. for all homotopies $G: X \times [0,1] \to B$ of the map $p \circ f$ there exists a homotopy $F: X \times [0,1] \to E$ such that

a) $F_0 = f$ the homotopy F starts with f**b)** $p \circ F = G$. the homotopy on E projects to the homotopy on B

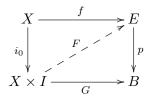
FIBRATION

DEFINITION (FIBRATION)

A (Hurewicz) fibration is a surjection $p: E \to B$ that satisfies the homotopy lifting property for all spaces.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

COMMUTATIVE DIAGRAM



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Relative HLP

DEFINITION Lot

Let

$$T:=(X\times\{0\})\cup(A\times[0,1]).$$

We say p has the homotopy lifting property for a pair (X, A) if

- 1. for any homotopy $F: X \times [0,1] \to B$
- 2. for any lifting $\tilde{f}: T \to E$ of $f = F|_T$

there exists a homotopy $G: X \times [0,1] \to E$ such that $p \circ G = F$ and $\tilde{F}|_T = \tilde{g}$.

うして ふゆ く は く は く む く し く

Remark

Notice that $A = \phi \implies T = X \times \{0\}$ gives the standard definition of HLT.

p_* is Surjective

THEOREM

Let $p: E \to_p B$ be a Serre fibration. Choose $b_0 \in B$ and $x_0 \in F$ such that $p^{-1}(b_0) = x_0$. Then, there exists a map

$$p_*: \pi_n(E, F, x_0) \to \pi_n(B, b_0)$$

A D F A 目 F A E F A E F A Q Q

that is an isomorphism for all $n \ge 1$. Proof. 1. p_* is surjective

p_* is Injective

THEOREM

Let $p: E \to_p B$ be a Serre fibration. Choose $b_0 \in B$ and $x_0 \in F$ such that $p^{-1}(b_0) = x_0$. Then, there exists a map

$$p_*: \pi_n(E, F, x_0) \to \pi_n(B, b_0)$$

that is an isomorphism for all $n \ge 1$. Proof. 2. p_* is injective

KEY COROLLARY

COROLLARY

If B is path-connected. Then there is an induced long exact sequence on homotopy groups, given by

$$\cdots \to \pi_n(F, x_0) \to \pi_n(E, x_0) \to \pi_n(B, b_0) \to \pi_{n-1}(F, x_0) \to \dots$$

Statement without proof. The isomorphism induces the exact sequence for the pair (E, F);

$$\cdots \to \pi_n(F) \to \pi_n(E) \to \pi_n(E,F)$$

うして ふゆ く は く は く む く し く

Proof.

Questions?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで