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Abstract

This is an expository paper on fibrations in the context of higher homotopy
groups. The paper does not assume any pre-requisite knowledge, adopting a rather
axiomatic approach. We direct our focus towards fibrations and show how one can
apply this powerful machinery to compute homotopy groups.

One main result regards the loop-space fibration, which shifts the homotopy
group by one degree. Another highly non-trivial result utilisies the Hopf fibration
to prove that the homotopy groups of S2 and S3 coincide for n ≥ 3.

The goal of this paper is to trivialise and familiarise, and to equip the reader
with the right ideas for a more developed treatment of the subject.
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0 Algebraic Preliminaries

We start with some algebraic preliminaries.

Definition 0.1 (Group). Let G be an arbitrary set, endowed with a binary operation
∗. We say (G, ∗) is a group if for all g1, g2, g3 ∈ G,

1. g1 ∗ (g2 ∗ g3) = (g1 ∗ g2) ∗ g3 ∗ is associative

2. ∃e ∈ G : e · g1 = g1 · e = g1 there exists an identity element

3. ∃ḡ1 ∈ G : g1 ∗ ḡ1 = ḡ1 ∗ g1 = e as well as an inverse for every element

Definition 0.2 (Group Homomorphism). Let (G, ∗) and (H, ·) be two groups. We say
a function h : G→ H induces a homomorphism if for all u, v ∈ G, we have

h(u ∗ v) = h(u) · h(v).

Corollary 0.3. h sends eG, the identity on G, to eH , the identity on h.

Proof. We know that im(h) ∈ H, so we apply the left inverse of h(eG), that is h̄(eG).

eH =: h̄(eG) · h(eG ∗ eG) =0.2 h̄(eG) · h(eG) · h(eG) := h(eG) □

Note that h need not be bijective, so we emphasize that with the next definition.

Definition 0.4 (Group Isomorphism). If h is bijective, then it induces an isomorphism.
We write G ∼= H and sometimes G = H.

Definition 0.5 (Long Exact Sequence). Let {Gi}ni=1 be a family of groups. A sequence

G1 →f1 G2 →f2 · · · →fn−1 Gn

induced by homomorphisms {fi}n−1
i=1 is said to be long-exact if for all i ∈ {1, . . . , n−1},

im(fi) = ker(fi+1)

Remark. A short exact sequence is the special case where G1 = Gn = 0.1

Not only is the following lemma a great example that grasps the idea of an exact sequence;
it also plays a key role in our discussions of homotopy groups.

Lemma 0.6. Let G1, G2 be two groups. Then,

0 →f1 G1 →f2 G2 →f3 0 is exact ⇐⇒ G1
∼= 2 G2.

Proof. fi are homomorphisms, therefore fi sends 0 7→ 0 (0.3). The isomorphism yields
G1

∼= G2 ⇐⇒ im(f2) = G2 ∧ ker(f2) = 0
⇐⇒ im(f1) := 0 =: ker(f2) ∧ im(f2) := G2 =:ker(f3) □

1From now on, 0 is thought of as the group identity.
2G1

∼= G2 ⇐⇒ G1 is isomorphic to G2
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1 The Simplest Homotopy Group

The idea behind π1(X) is rougly summarized in ”fitting loops into space,” with the key
observation that a loop can be deformed into a circle. Looking at these groups can reveal
useful info about the structure of a space. The fundamental group is also an algebraic
invariant, meaning that two spaces X,Y with different fundamental groups i.e. (X ̸∼= Y )
are two different spaces which are not homotopic, so that is already useful.

The concept of higher homotopy groups is a generalization of the fundamental idea of
fitting loops into space. Thus, it only makes sense to first intuit this idea as we explore
more complicated constructions.

Definition 1.1 (Loop). A loop γ : [0, 1] → X is a continuous path with the property
that

γ(0) = γ(1) = x0 ∈ X

i.e. it starts and ends at the same point.

Definition 1.2 (Homotopy of Loops). Let γ, γ′ : [0, 1] → X be two loops such that for
some x0 ∈ X we have

γ(0) = γ(1) = x0 = γ′(0) = γ′(1).

We say h : [0, 1]× [0, 1] → X is a homotopy between γ, γ′ if for all s, t ∈ [0, 1],

1. h(0, t) = γ(t) homotopy starts with the loop γ

2. h(1, t) = γ′(t) homotopy ends with the loop γ′

3. h(s, 0) = h(s, 1) = x0 base point x0 is fixed at the endpoints regardless of s

Finally, we demand h to be continuous.

Remark. A homotopy of paths holds for h(s, 0), h(s, 1) yielding both ends of the path.

It is often useful to think of the homotopy as the continuous deformation of loops in
between γ and γ′, with fixed basepoint x0. This is best illustrated below.

x0

γ

γ′

Homotopy Class of γ, γ′

Corollary 1.3. The homotopy h defines an equivalence relation ≃ over all paths in X.

Proof.

1. Reflexivity. It is easy to see that γ ≃ γ with the trivial homotopy h(s, t) = γ(t)
for all s ∈ [0, 1].
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2. Symmetry. Let γ ≃ γ′. Then, there exists continuous h(s, t) such that

� h(0, t) = γ(t);

� h(1, t) = γ′(t);

� h(s, 0) = h(s, 1) = x0.

Next, define h̄(s, t) = h(1− s, t). Clearly h̄ is inherently continuous, and

� h(0, t) = γ(t) =: h̄(1, t);

� h(1, t) = γ′(t) =: h̄(0, t);

� h(s, 0) = h̄(s, 0) = x1 = h(s, 1) = h̄(s, 1). h fixes x0 regardless of s

Therefore γ′ ≃ γ.

3. Transitivity. Let γ1 ≃ γ2 and γ2 ≃ γ3. Then, define

H(s, t) =

{
h1(2s, t) 0 ≤ s ≤ 1

2

h2(2s− 1, t) 1
2 ≤ s ≤ 1

with h1 a homotopy of γ1, γ2 and h2 a homotopy of γ2, γ3.

� H(0, t) = h1(0, t) := γ1(t);

� H(1, t) = h2(1, t) := γ3(t);

� H(s, 0) =

{
h1(s, 0) := x0 0 ≤ s ≤ 1

2

h2(2s− 1, 0) := x0
1
2 ≤ s ≤ 1

= x0;

� H(s, 1) =

{
h1(s, 1) := x0 0 ≤ s ≤ 1

2

h2(2s− 1, 1) := x0
1
2 ≤ s ≤ 1

= x0.

Therefore by the homotopy H we have that γ1 ≃ γ3.

A lengthy yet easy argument. □

Definition 1.4 (Concatenation of Loops.). Let γ, β be two loops in X such that γ(0)
coincides with β(1). We define

(γ ∗ β)(t) =

{
γ(2t) 0 ≤ t ≤ 1

2

β(2t− 1) 1
2 ≤ t ≤ 1

to be the concatenation of γ, β.

Example 1.4. An interesting observation here is that concatenation yields a new ho-
motopy class different than the other classes. Indeed, [γ] ̸= [β] ̸= [γ ∗ β.]
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X

x0

γ

β

concatenates to

X

x0

β ∗ γ

The concatenation operation induces a group structure on the following set.

Definition 1.5 (The Fundamental Group). Let X be a topological space with a base
point x0. We define

π1(X) = {γ : [0, 1] → X | γ continuous, γ(0) = γ(1) = x0}/ ≃

to be the set of equivalence classes of loops under homotopy.

Theorem 1.6. The set π1(X,x0) endowed with concatenation ∗ is a group.

Proof. Recall that homotopy fixes endpoints, so we can rest assured that the operation
∗ is well defined. We proceed with the standard group axioms.

1. Associativity. For homotopy classes of loops [γ], [β], [α] we have

γ ∗ (β ∗ α) =


γ(2t) 0 ≤ t ≤ 1

2

β(4t− 2) 1
2 ≤ t ≤ 3

4

α(4t− 3) 3
4 ≤ t ≤ 1

& (γ ∗ β) ∗ α =


γ(4t) 0 ≤ t ≤ 1

4

β(4t− 2) 1
4 ≤ t ≤ 1

2

α(2t− 1) 1
2 ≤ t ≤ 1

the concatenation of loops. It suffices to show that (γ ∗β)∗α ≃ γ ∗ (β ∗α). Choose

h(s, t) =


γ
(
2t · s+ 4t · (1− s)

)
0 ≤ t ≤ ( s2 + 1−s

4 )

β
(
4t− 2

)
s
2 + 1−s

4 ≤ t ≤ 3s
4 + 1−t

2

α
(
(4t− 3) · s+ (2t− 1) · (1− s)

)
3s
4 + 1−s

2 ≤ t ≤ 1

and then we have that

(a) h(0, t) =


γ
(
4t
)

0 ≤ t ≤ 1
4

β
(
4t− 2

)
1
4 ≤ t ≤ 1

2

α
(
2t− 1

)
1
2 ≤ t ≤ 1

=: (γ ∗ β) ∗ α start of homotopy

(b) h(1, t) =


γ(2t) 0 ≤ t ≤ 1

2

β(4t− 2) 1
2 ≤ t ≤ 3

4

α(4t− 3) 3
4 ≤ t ≤ 1

=: γ ∗ (β ∗ α) end of homotopy

(c) h(s, 0) = γ
(
0) base point of (γ ∗ β) ∗ α is independent of s

(d) h(s, 1) = α
(
s+ (1− s)

)
= α(1) base point of γ ∗ (β ∗ α) is independent of s
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and one only needs to check that h is continuous at ( t2 + 1−t
4 ) and (3t4 + 1−t

2 ) to
see the homotopy.

2. Identity Element. Let idx0(t) be the constant loop x0 for all t. Then clearly
idx0(0) = idx0(1) = x0 and therefore [idx0 ] ∈ π1(X). Next, choose a γ and consider

γ ∗ idx0 =

{
γ
(
2t
)

0 ≤ t ≤ 1
2

idx0 = γ(1) 1
2 ≤ t ≤ 1

& idx0 ∗ γ =

{
idx0 = γ(0) 0 ≤ t ≤ 1

2

γ
(
2t− 1

)
1
2 ≤ t ≤ 1

.

We get that γ ≃ (γ ∗ idx0) and γ ≃ (idx0 ∗ γ) as they are only reparameterizations
of each other. Hence, the equivalence classes

[γ ∗ idx0 ] = [idx0 ∗ γ] = [γ]
are all the same.

3. Inverse. Choose γ ∈ [γ], and let γ̄(t) = γ(1− t), and let γ(0) = x0. We show that
idx0 ≃ γ ∗ γ̄ which in turn implies [γ] ∗ [γ̄] = [idx0 ]. For

(γ ∗ γ̄)(t) =

{
γ(2t) 0 ≤ t ≤ 1

2

γ̄(2t− 1) 1
2 ≤ t ≤ 1

,

define the homotopy

h(s, t) = γ(st) ∗ γ̄(st) :=

{
γ(2st) 0 ≤ t ≤ 1

2

γ̄(2st− 1) 1
2 ≤ t ≤ 1

.

We get that

(a) h(0, t) =

{
γ(0) := x0 0 ≤ t ≤ 1

2

γ̄(1) := γ(0) 1
2 ≤ t ≤ 1

=: idx0

(b) h(1, t) =

{
γ(2t) 0 ≤ t ≤ 1

2

γ̄(2t− 1) 1
2 ≤ t ≤ 1

=: γ ∗ γ̄

(c) h(s, 0) = γ(0) := x0 =: γ̄(1) = h(s, 1) the base point is independent of s

and therefore γ ∗ γ̄ ≃ idx0 =⇒ [γ] ∗ [γ̄] = [idx0 ]. Using the homotopy

h̄ = γ̄(st) ∗ γ(st)
one can show that indeed [γ̄] ∗ [γ] = [idx0 ].

The claim follows immediately. □

The problem, however, with π1(X) is that it ends at the two skeleton. Beyond that,
it cannot consistently reveal info about higher-dimensional spaces. A natural idea is to
generalise this notion by fitting higher-dimensional spheres into X, thus revealing more
information. This is precisely the idea behind πn, that is fitting n−spheres into space.
In the following section, we aim our attention at formalizing this idea.
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2 More Complicated Homotopy Groups

We begin by introducing some new notation.

Definition 2.1 (n−Dimensional Cube & Boundary). Let I = [0, 1] be the unit interval.
We define

In := [0, 1]n

to be the n−dimensional cube. We denote its boundary by ∂In, given by

∂In := {(t1, . . . , tn) ∈ In | there exists a ti ∈ {0, 1}}

with the convetion ∂I0 = {}.

Example 2.1. The boundary of the two dimensional unit cube is given by its four sides.

∂I2 := {(0, t) ∪ (1, t) ∪ (t, 0) ∪ (t, 1) | t ∈ [0, 1]}.

(0,0) (t, 0)

(1, t)
(0, t)

(t, 1)

It is perhaps now easier to see now why any point with 0 or 1 in its co-ordinates is
automatically on the boundary. Next, let us see how we can naturally extend the notion
of a one-dimensional loop.

Definition 2.2 (n-Sphere Maps). Let In be the n−dimensional unit cube. On a pointed
topological space (X,x0), we define

f : In → X

to be an n−sphere map f, if the boundary is mapped to some point x0 ∈ X

f(∂In) = x0.

Equivalently, one can define the n−sphere map as follows.

f : Sn → X for Sn = {x ∈ Rn+1 | ||x|| = 1}.

Remark. The map f is indeed homeomorphic to Sn.

Example 2.2 (Mapping the Boundary). We re-visit the classical case with n = 1 where

f(0) f(1)

becomes

f(0)

f
f(1)

becomes

f(0)
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so we get that mapping the 1−dimensional boundary to one point gives us a circle S1!

For n = 2, grab a piece of paper, and hold it by its four ends. If you extend the rest of
its boundary to this point, you get something that looks like a sphere S2.

Indeed, the previous example delivers the right intuition across as to why we map the
boundary to a point. In full generality, mapping ∂In to a base point x0 gives an n−sphere
Sn based at x0. Let us now extend the notion of homotopy in a similar fashion.

Definition 2.3 (Generalized Homotopy of Maps). Let f, g be two n−sphere mappings
into X. We say f, g are homotopic if there exists a homotopy

H : I × ∂In → X

such that for all t ∈ ∂In and all s ∈ I,

1. H(0, t) = f the homotopy starts with f

2. H(1, t) = g the homotopy ends with g

3. H(s, ∂In) = x0 the image of the boundary is x0, independent of s

with H continuous.

We can already see that the definition practically generalises Definition 1.2. Here we
have a homotopy of spheres, for which the boundary is mapped to the same x0. In the
case of a loop, the boundary ∂I consists of just {0, 1} which are mapped to x0.

Corollary 2.4. H : I × ∂In → X is an equivalence relation over n-sphere maps in X.

Proof. Follows immediately from Corollary 1.3 with the minor tweak that t in H(s, t)
is thought of as an element of ∂In. □

Definition 2.5 (Higher Homotopy Groups). Let (X,x0) be a pointed topological space.
We define

πn(X,x0) := {f : [0, 1]n → X | f(∂In) = x0}/ ≃

to be the n−th homotopy group, that is the set of equivalence classes of n−sphere
maps with base point x0 ∈ X.

Remark. For π0(X,x0) we know that I0 := {0, 1}. Since δI0 is empty, we map 1 7→ x0
and consider f(0) ∈ X. If f, f̄ are homotopic then we find a path that connects f(0) with
f̄(0). Therefore we say that π0(X,x0) is the set of equivalence classes of path-connected
components of X.

Definition 2.6 (Concatenation of n−Spheres). For f, g ∈ πn(X), we define f ∗ g by

(f ∗ g)(t1, . . . , tn) :=

{
f(2t1, t2, . . . , tn) 0 ≤ t1 ≤ 1

2

g(2t1 − 1, t2, . . . , tn)
1
2 ≤ t1 ≤ 1

.
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Remark. We immediately observe that it is equivalent to Definition 1.4 for concatena-
tion of loops, applied to the first co-ordinate t1. One could also define

(f ∗i g)(t1, . . . , tn)

{
f(t1, t2, . . . , 2ti, . . . , tn) 0 ≤ ti ≤ 1

2

g(t1, t2, . . . , 2ti − 1, . . . , tn)
1
2 ≤ ti ≤ 1

.

Interestingly enough, there is an explicit homotopy equivalence f ∗ g ≃ f ∗i g,

H(s, t) := s · (f ∗i g)(t) + (1− s) · (f ∗ g)(t)

which is sufficient for πn where we consider equivalence classes of homotopies.

Corollary 2.7. The sets πn(X,x0) endowed with concatenation ∗ are groups for n ≥ 1.

Proof. First, we note that the homotopy is well defined, as it fixes x0 for any choice of
f ∈ [f ]. Using the previous remark, we conclude the proof by applying the argument
from Theorem 1.6 in one co-ordinate. □

It turns out that πn(X,x0) is abelian for n ≥ 2, which is not necessarily the case for the
fundamental group of X. E. Čech proposed this in a 1932 paper, which was rejected for
the Zurich ICM since πn(X) do not generalise π1(X) as originally desired.[11]

The homotopy creates enough space. Given two spheres f, g, we can shrink (if necessary),
re-order and then concatenate as shown below.

f g ∼= f g ∼=
f

g
∼= g f ∼= g f

To formalize this notion one can apply the Eckmann-Hilton Argument. From now on
we adopt the + notation to emphasize the abelian concatenation property on πn(X,x0).

With this powerful construction at hand, it is too tempting to not ask the following
question: given πn(X,x0), what type of group is it (isomorphic to)?

In the following part of this discussion, we attempt to answer this question by computing
the higher homotopy groups of spheres. We warn the reader, however, not to get too
excited. Computing πn(S

k) has historically proven to be a non-trivial process, and we
shall provide a glimpse into this reality.
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3 A Glimpse into πn(S
k)

Here, we build up some intermediate results. The notion of homemorphisms of topolog-
ical spaces is too strong for our purposes, so we weaken it by means of a homotopy.

Definition 3.1. (Homotopy of Spaces) Two spaces X,Y are homotopy equivalent if
there exists maps f : X → Y and g : Y → X such that g ◦ f ≃ idX and f ◦ g ≃ idY .
A space is contractible if it is homotopy equivalent to a point.

Example 3.1. For X ⊆ Rn convex with base point x0, we have a trivial fundamental
group. We write π1(X,x0) = 0, with 0 denoting the trivial group in one element.

X

x0 γ

We see that there is only one homotopy class, with γ ≃ idx0 for all loops γ ∈ X. This is
also true in full generality, demonstrated by the following lemma.

Lemma 3.2. If a space (X,x0) is contractible, then its homotopy groups are trivial.

Proof. A contractible space is homotopic to a point, therefore there exists only the
homotopy class of the constant loop idx0 : (In, ∂In) → (X,x0) =⇒ 3.3 πn(X,x0) = 0. □

Example 3.2. Rn is contractible to the origin. This also follows from the fact that it is
path connected. A good visual image is to think of R2 as a paper contracted to a point.

Next, we observe that given a map φ : (X,x 0) → (Y, y0), there is an induced map

φ∗ : πn(X,x0) → πn(Y, y0) with φ∗[f ] = [φ ◦ f ]

that is a homomorphism. One simply checks that φ∗[f ∗ g] = φ∗[f ] ∗ φ∗[g] where we
remind the reader that ∗ is the concatenation operation. To build up on this, we have
the following result on homotopy equivalent spaces and their fundamental groups.

Corollary 3.3. (X,x0) ≃ (Y, y0) =⇒ πn(X,x0) ∼= πn(Y, y0)

Proof. Consider the induced maps on homotopy groups, with homotopy φ ◦ ψ = idY

φ∗ : πn(X,x0) → πn(Y, y0) ; ψ∗ : πn(Y, y0) → πn(X,x0)

then (φ∗ ◦ ψ∗)[f ] = [φ ◦ (ψf)] = [(φ ◦ ψ)f ] =(φ◦ψ=id) [f ] by homotopy equivalence. □

Here we say π is a functor from the category of topological spaces Top∗ with base points,
to Grp, the category of groups; a brief remark for our category theorists.

Next is our first non-trivial computation.
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Lemma 3.4. π1(S
n) = 0 for n ≥ 2.

Visual Proof. For n = 2, we fit loops into S2. We clearly see that all loops based at s
are homotopic, i.e. there exists only the trivial homotopy class.

s

Therefore we can always contract all loops to the identity. For n > 2 one may need to
be more rigorous, but the idea remains fundamentally the same. □

Remark. IfX is path connected and has a trivial fundamental group, we sayX is simply
connected.

This is enough build-up, meaning we are ready to tackle the main ideas of this paper.
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4 Fibrations & The Lifting Problem

We have seen how difficult computing homotopy groups of spheres is. If we want to do
this for a more general class of topological spaces, we need to develop some more tools.
This is precisely what Serre did in a 1951 paper [7], where he developed the Serre fibra-
tion specifically for the purpose of computing homotopy groups.

We now discuss the lifting problem. Let us start with the following setup

E

p

��
X

f //

BB

B

with p a continuous fixed map, and f continuous. We would like to know when the
map f lifts through p to another map in E. Here is how one could visualize this.

f̃

g̃

H̃

B
f

gH

p

E

As seen, p−1 ”lifts” a homotopy H to a homotopy H̃. This is precisely what we look for.

Definition 4.1 (Homotopy Lifting Property). A map p : E → B is said to have a
homotopy lifting property with respect to a topological space X if

1. for all maps f : X → E

2. for all homotopies G : X × [0, 1] → B of the map p ◦ f
there extsist a homotopy

F : X × [0, 1] → E

such that

1. F0 = f the homotopy F starts with f

2. p ◦ F = G. the homotopy on E projects to the homotopy on B

A commutative diagram is a bit nicer to work with.

X
f //

i0

��

E

p

��
X × I

G
//

F

88

B
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with i0 given by x 7→ (x, 0). We note that it is way too terse to ask that the maps
strictly satisfy the diagram. For all practical purposes, we can ask that the lift exists up
to homotopy.

Below is another useful construct for our next proof, a generalisation of the HLP.

Definition 4.2 (Relative Homotopy Lifting Property). Let

T := (X × {0}) ∪ (A× [0, 1]).

We say p has the homotopy lifting property for a pair (X,A) if

1. for any homotopy F : X × [0, 1] → B

2. for any lifting f̃ : T → E of f = F
∣∣
T

there exists a homotopy G : X × [0, 1] → E such that p ◦G = F and F̃
∣∣
T
= g̃.

Remark. Notice that A = ϕ =⇒ T = X × {0} gives the standard definition of HLT.

In simple words, a homotopy on B corresponds to a homotopy on E, with an extension
of the initial lift by using f̃ . We will use this multiple times in the proof.

We define both notions of fibrations for the sake of completeness.

Definition 4.3 (Hurewicz Fibration). A Hurewicz fibration is a surjection p : E → B
that satisfies the homotopy lifting property with respect to all maps of the form

i : A× {0} ↪→ A× I

Definition 4.4 (Serre Fibration). A Serre fibration is a surjection p : E → B that
satisfies the homotopy lifting property with respect to all maps of the form

i : In × {0} ↪→ In × I for n ≥ 0.

Remark. Every Serre fibration is a Hurewicz fibration.

Definition 4.5 (Fiber). If p : E → B is a map of spaces and b ∈ B, then p−1(b) ⊂ E is
the fiber of p over b.

Definition 4.6 (Subspace Boundary). We define

Jn = (In × {0}) ∪ (∂I × I) ⊂ ∂In+1 ⊂ In

to be the complement of In−1, the front face of In. We use the convention J0 = 0.
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Theorem 4.7. Let p be a Serre fibration with fiber F . Assume further that B is path-
connected. Then, the fibration

(F, e0) ↪→ (E, e0) →p (B, b0)

induces a sequence of the form

· · · → πn+1 →δ πn(F, e0) →i∗πn(E, e0) →p∗ πn(B, b0) →δ . . .

· · · →δπ0(F, e0) →i∗ π0(E, e0) →p∗ π0(B, b0).

Proof. The main idea here is to construct the map δ, which we like to call the connecting
homomorphism. We let

(B, b0) ∋ [α] ∋ α : (In, ∂In) → (B, b0)

and define ce0 : Jn−1 → E be the constant map at e0. Then, we find that

Jn−1
ce0 //

i0

��

E

p

��
X × I α

//

β

99

B

commutes. Therefore the homotopy lifting property yields β as shown above such that
p ◦ β = α and β(Jn−1) = e0. Next, we define δ[α] ∈ πn−1(F, e0) to be the element
represented by

β(−, 1) : In−1 → F, t 7→ β(t, 1).

Indeed, we note the following.

1. The boundary of In−1 × {1} is a subset of Jn−1 and is thus mapped to e0.

2. The image of In−1×{1} is contained in (p−1 ◦α)(In−1×{1}) = p−1(b0) = F. This
follows from the fact that In−1 × {1} ⊂ ∂In and α maps ∂In by definition to b0.

It remains to show that δ is well defined on homotopy classes, i.e. is independent of the
choice of [α]. This part of the proof gets a bit technical, so we omit the details. □

Corollary 4.8. This sequence is exact. For the sets π0, exactness is understood in the
sense that ker(p∗) = im (i∗), but without homomorphism as π0 are not groups.

Proof. It is indeed good practice to continually refer to the diagram below.

Jn
k //

i0

��

E

p

��
In × I

h
//

l

88

B
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1. Exactness at πn(E, e0). Consider the composition

p ◦ i : F → B

where i is the inclusion map F ↪→ E. The map p sends the fiber F to b0, therefore the
induced composition p∗ ◦ i∗ = 0 implies that im(i∗) ⊂ ker (p∗). For the other inclusion,

1. choose πn(E, e0) ∋ [α] ∋ α : In → E such that p∗[α] = [p ◦ α] = 0

2. Assume there exists h : In × I → B that is a homotopy relative to ∂In from p ◦ α
to to the constant map cb0 .

3. Define k : Jn → E by k
∣∣
In×{0} = α and constant e0 on the other faces.

Jn
k //

i0

��

E

p

��
In × I

l
//

h

88

B

Then the homotopy lifting property guarantees the existence of l. Define l′ := l
∣∣
In×{1},

and note that
p ◦ l′(s, 1) = p ◦ l(s, 1) = h(s, 1) = b0

follows as h is a homotopy between p ◦ α and cb0 . Therefore im(l′) ⊂ p−1(b0) = F and
l′(∂In, 1) = e0. This is enough to conclude that [l′] ∈ πn(F, e0) with i∗[l

′] = [i ◦ l′] = [α]
by the homotopy l. The exactness is therefore established with ker(p∗) ⊂ im(i∗)

2. Exactness at πn(B, b0). Let πn(B, b0) ∋ [β] ∋ β : In → E. Then, for α = p ◦ β we
can take the same β as the lift in Theorem 4.7. Then we find that

δ ◦ p∗[β] = [β(−, 1)].

Note, however, that In−1 × {1} ⊂ ∂In ⊂ ∂In implies that β(−, 1) is the constant map
ce0 . Hence, the inclusion im(p∗) ⊂ ker(δ) from δ ◦ p∗ = 0. Next, suppose

πn(B, b0) ∋ [α] ∋ α : In → B.

Then for β in

Jn−1
ce0 //

i0

��

E

p

��
In

β
//

α

99

B
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we get β(−, 1) ∼ ce0 relative to ∂In−1. Finally, we define γ : In−1 × I → E such that

γ(s, t) =
{
β(s, 2t) 0 ≤ t ≤ 1

2h(s, 2t− 1) 1
2 ≤ t ≤ 1

Then we indeed have that [γ] ∈ πn(E, e0). The composition p ◦ h is constant, therefore
p ◦ γ ≃ p ◦ β = γ. The inclusion ker(δ) ⊂ im(p∗) is induced by [α] = p∗[γ] and therefore
concludes the exactness argument.

3. Exactness at πn−1(F, e0). Let πn(B, b0) ∋ [β] ∋ β : In → E. Then, we see that
β as in Theorem 4.7 shows that ce0 ≃ β(−, 0) ∼ β(−, 1) relative to E. Therefore the
inclusion im(δ) ⊂ ker(i∗) follows from i∗ ◦ δ[α] = 0. Next, let

1. πn−1(F, e0) ⊃ ker(i∗) ∋ γ : In−1 → F be in the kernel, then i∗[γ] = 0.

2. h : In−1 × I → E be a homotopy between i ◦ γ and ce0 relative to ∂In−1.

Notice α = p ◦ h is an element of πn(B, b0), and we can choose β = h to be the diagonal
homotopy lift. The inclusion ker(i∗) ⊂ im(δ) follows from the fact that δ[α] = [γ].

This extensive argument is indeed sufficient to conclude the proof. □

This corollary is a key transition point in our discussion, and is the foundation of all the
main results in this paper. An immediate consequence is the following,

Corollary 4.9. For n ≥ 2, the fibration

Z ↪→ R → S1

yields πn(S
1) = 0.

Proof. The induced long exact sequence of homotopy groups is given by

· · · → πn(Z) → πn(R) → πn(S
1) → πn−1(Z) . . .

We immediately get from (Example 3.1) that πn(Z) = πn(R) = 0 for n > 0. Then, the
exactness of the sequence implies the triviality of πn(S

1) for n ≥ 2. □

Remark. Here we present a somewhat unconventional proof, contrary to a standard
proof using covering space theory. We specifically make this choice to emphasize the full
strength of the resulting long exact sequence.
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5 Applications to Homotopy Groups

Definition 5.1 (The Hopf Fibration). Define

S3 := {(z1, z2) | |z1|2 + |z2|2 = 1}

to be the 3-sphere in the two-dimensional complex plane C2. Next, let

η(z1, z2) = (2z1z̄2, |z1|2 − |z22 |)

be the Hopf fibration, with z̄2 denoting the complex conjugate of z2.

Corollary 5.2. η is well-defined.

Proof.
∣∣2z1z̄2∣∣2 + (

|z1|2 − |z2|2
)2

= 1 =⇒ im(η) ⊆ S2 □

Theorem 5.3. πn(S
3) ∼= πn(S

2) for n ≥ 3

Proof. Notice that the fibration given by

S1 ↪→ S3 →η S
2

induces a long exact sequence of homotopy groups by Corollary 4.8,

· · · → πn(S
1) → πn(S

3) → πn(S
2) → πn−1(S

1) → . . . .

We know by Corollary 4.9 that πn(S
1) is trivial for all n ≥ 2, hence

. . . → 0 → πn(S
3) → πn(S

2) → 0 → . . .

for which applying Lemma 0.6 establishes the claim. □

Remark. We have the short exact sequence shown above for πn−1(S
1) = 0, which explains

the choice of n ≥ 3.

Definition 5.4. Let X be a topological space. For a base point b ∈ X, define

P (X, b) := {γ : I → X | γ(0) = b}

to be the path space of paths in X starting at b.

Remark. A loop is a special path where γ(1) = γ(0). Here, this is not always the case.

Definition 5.5. For a topological space X, we define

ΩbX := {γ : I → X | γ(0) = γ(1) = b}

to be the space of all loops based at b ∈ X.

We have already extensively discussed loops in space, so this concept is not alien to us.
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Definition 5.6 (The Path-loop Fibration.). The map p : P (X, b) → X defines

ΩbX ↪→ P (X, b) →p (X, b)

a Serre fibration with fiber ΩbX.

Lemma 5.7. P (X, b) is contractible for any X, b ∈ X.

Proof. We show that for maps

f : P (X, b) → b γ 7→ γ(0)

g : b→ P (X, b) b 7→ γb

with γb the constant path on b, that (see Definition 3.1)

f ◦ g ≃ idb & g ◦ f ≃ idP (X,b).

If we can retract P (X, b) to a point, then we are done. Clearly, f ◦ g yields

b 7→g γ 7→f γ(0) := b = idb

the identity on b. Next, notice that g ◦ f we always have the constant path based at b.

P (X, b) 7→f b 7→g γb ∈ P (X, b)

We define
h(s, t) = γb(st)

such that

1. h(0, t) = idb the homotopy fixes the identity

2. h(1, t) = γb(t) as well as the constant map

3. h(s, 0) = γb(0) = b the first startpoint is fixed

4. h(s, 1) = γb(s) = b the second endpoint is fixed

therefore, a homotopy γb ≃ idP (X,b) for every constant path γb. The proof is concluded
with g ◦ f ≃ idP (X,b). □

Theorem 5.8. πn(ΩX) ∼= πn+1(X)

Proof. From the fibration
ΩbX ↪→ P (X, b) → Xb

we have the following long exact sequence (Corollary 4.8).

· · · → πn+1

(
P (X, b)

)
→ πn+1(X) → πn(ΩX) → πn

(
P (X, b)

)
→ . . . .

Since PbX is contractible (Lemma 5.7), we immediately apply Lemma 3.2 to get

· · · → 0 → πn+1(X) → πn(ΩX) → 0 → . . . .

Lemma 0.6 concludes the proof. □
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