THE BANACH-TARSKI PARADOX AN EXPOSITION

Omar Elshinawy Undergraduate Seminar, Fall 2023

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

OVERVIEW

ON THE FREE GROUP

[A Prelude](#page-2-0) [Free Group](#page-4-0) F_2 [An Interesting Decomposition of](#page-6-0) F_2

FROM GROUPS TO SPHERES

[A Group of Rotations](#page-10-0) [Banach-Tarski Paradox, First Version](#page-13-0) [Decomposing](#page-15-0) S^2 [Problematic Poles](#page-19-0)

THE UNIT BALL B^3

 S^2 [to](#page-22-0) B^3 [Why We Need 5 Partitions](#page-24-0)

CLOSING WORDS

[Axiom of Choice and Criticism](#page-26-0)

ON THE FREE GROUP [A Prelude](#page-2-0)

[Free Group](#page-4-0) F_2 [An Interesting Decomposition of](#page-6-0) F_2

FROM GROUPS TO SPHERES

[A Group of Rotations](#page-10-0) [Banach-Tarski Paradox, First Version](#page-13-0) [Decomposing](#page-15-0) S^2 [Problematic Poles](#page-19-0)

THE UNIT BALL B^3

 S^2 [to](#page-22-0) B^3 [Why We Need 5 Partitions](#page-24-0)

CLOSING WORDS

[Axiom of Choice and Criticism](#page-26-0)

KORK (FRAGE) KEY GRAN

WHAT IS A FREE GROUP?

Define

 \blacktriangleright S a set $S^{-1} = \{ s \in S : s^{-1} \}$ such that $s_i s_i^{-1} := e$ \blacktriangleright $T = S \cup S^{-1}$ $\blacktriangleright \langle S \rangle \coloneqq \{ t_1 t_2 \ldots t_n : t_i t_{i+1} \neq e, t_i \in T, n \in \mathbb{N}_0 \}$

where $w_n \in \langle S \rangle$ is a reduced word of length n, and $t_0 \coloneqq e$. We denote the free group with $F_S \coloneqq \langle S \rangle$ of rank $|S|$.

[A Prelude](#page-2-0) [Free Group](#page-4-0) F_2

[An Interesting Decomposition of](#page-6-0) F_2

FROM GROUPS TO SPHERES

[A Group of Rotations](#page-10-0) [Banach-Tarski Paradox, First Version](#page-13-0) [Decomposing](#page-15-0) S^2 [Problematic Poles](#page-19-0)

THE UNIT BALL B^3

 S^2 [to](#page-22-0) B^3 [Why We Need 5 Partitions](#page-24-0)

CLOSING WORDS

[Axiom of Choice and Criticism](#page-26-0)

KORK (FRAGE) KEY GRAN

FREE F_2

Similarly,

\n- ▶
$$
S = \{\sigma, \tau\}
$$
 with $|S| = 2$.
\n- ▶ $S^{-1} = \{\sigma^{-1}, \tau^{-1}\}$
\n- ▶ $T = \{\sigma, \sigma^{-1}, \tau, \tau^{-1}\}$
\n- and $F_2 = \langle \sigma, \tau \rangle$. How does F_2 look like?
\n- ▶ $\tau \tau \sigma^{-1} \sigma^{-1} \cdots \in F_2$
\n- ▶ $\tau \sigma^{-1} \sigma \tau^{-1} \in F_2$?
\n

K □ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

[A Prelude](#page-2-0) [Free Group](#page-4-0) F_2 [An Interesting Decomposition of](#page-6-0) F_2

FROM GROUPS TO SPHERES

[A Group of Rotations](#page-10-0) [Banach-Tarski Paradox, First Version](#page-13-0) [Decomposing](#page-15-0) S^2 [Problematic Poles](#page-19-0)

THE UNIT BALL B^3

 S^2 [to](#page-22-0) B^3 [Why We Need 5 Partitions](#page-24-0)

CLOSING WORDS

[Axiom of Choice and Criticism](#page-26-0)

How does F_2 look like?

Define $W(t) := \{w \in \langle \sigma, \tau \rangle : w_1 = t\}$ for $t \in T$. Recall, $T=\{\sigma,\tau,\tau^{-1},\sigma^{-1}\}$

 \blacktriangleright $W(\sigma)$ \blacktriangleright $W(\sigma^{-1})$ \blacktriangleright $W(\tau)$ \blacktriangleright $W(\tau^{-1})$

Then, $F_2 = \{e\} \cup W(\sigma) \cup W(\sigma^{-1}) \cup W(\tau) \cup W(\tau^{-1})$

A Paradoxical Decomposition WEIRD, RIGHT?

Apply σ^{-1} to $W(\sigma)$, then

$$
\sigma^{-1}W(\sigma) = W(\sigma) \cup W(\tau) \cup W(\tau^{-1}) \cup e = F_2 \setminus W(\sigma^{-1})
$$

$$
\tau^{-1}W(\tau) = W(\tau) \cup W(\sigma) \cup W(\sigma^{-1}) \cup e = F_2 \setminus W(\tau^{-1})
$$

$$
\implies \sigma^{-1}W(\sigma) \cup W(\sigma^{-1}) = F_2 = \tau^{-1}W(\tau) \cup W(\tau^{-1}).
$$

Observe that

$$
[\sigma^{-1}W(\sigma)] \cap [\tau^{-1}W(\tau)] \neq \{\}.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

GOING FROM F_2 to S_2

This is not geometric - yet. Can we fit F_2 into finite Euclidean space?

Goal: A Free group of rotations,

$$
G\langle \sigma, \tau \rangle \in \mathbb{R}^3 \; : \; G\langle \sigma, \tau \rangle \cong F_2
$$

KORKA SERKER ORA

acting on the unit Sphere S^2 in R^3 .

 \blacktriangleright $\sigma \circ \tau \neq \tau \circ \sigma$

 \blacktriangleright e uniquely determined by w_0

[A Prelude](#page-2-0) [Free Group](#page-4-0) F_2 [An Interesting Decomposition of](#page-6-0) F_2

FROM GROUPS TO SPHERES

[A Group of Rotations](#page-10-0)

[Banach-Tarski Paradox, First Version](#page-13-0) [Decomposing](#page-15-0) S^2 [Problematic Poles](#page-19-0)

THE UNIT BALL B^3

 S^2 [to](#page-22-0) B^3 [Why We Need 5 Partitions](#page-24-0)

CLOSING WORDS

[Axiom of Choice and Criticism](#page-26-0)

KORK (FRAGE) KEY GRAN

CONSTRUCTION OF $G\langle \sigma, \tau \rangle$

For simplicity, we choose rotations around the x, y axes.

$$
\sigma = R_x(\theta) := \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{bmatrix}
$$

$$
\tau = R_y(\theta) := \begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) \end{bmatrix}
$$

Exercise: Show that $\sigma \circ \tau \neq \tau \circ \sigma$.

CHOICE OF θ

Proposition, $G\langle \sigma, \tau \rangle \cong F_2$ is a Free Group $\implies \theta$ is an *irrational multiple of* π

Proof. Assume the contrary, let $\theta = 2\pi k$ for $k \in \mathbb{Q}|_{[0,1]}$.

Then
$$
k = \frac{p}{q} \implies q \theta = 2\pi p
$$
. We know
\n
$$
\sigma^q := [R_x(\theta)]^q
$$
\n
$$
= R_x(q\theta)
$$
\n
$$
= e
$$

But $|\sigma^q| = q \neq 0 \implies G\langle \sigma, \tau \rangle$ is not a Free Group. \square

[A Prelude](#page-2-0) [Free Group](#page-4-0) F_2 [An Interesting Decomposition of](#page-6-0) F_2

FROM GROUPS TO SPHERES

[A Group of Rotations](#page-10-0)

[Banach-Tarski Paradox, First Version](#page-13-0)

[Decomposing](#page-15-0) S^2 [Problematic Poles](#page-19-0)

THE UNIT BALL B^3

 S^2 [to](#page-22-0) B^3 [Why We Need 5 Partitions](#page-24-0)

CLOSING WORDS

[Axiom of Choice and Criticism](#page-26-0)

Banach-Tarski paradox

first version

Theorem 1, There exists a countable subgroup G of $SO(3)$, and a partition

$$
G = G_1 \uplus G_2 \uplus G_3 \uplus G_4 \tag{1}
$$

into disjoint sets G_1, G_2, G_3, G_4 , such that one can write

$$
G = G_1 \uplus \sigma \ G_2 = G_3 \uplus \tau \ G_4 \tag{2}
$$

KORKA SERKER ORA

for some rotations $\sigma, \tau \in SO(3)$.

Proof. G is precisely $G\langle \sigma, \tau \rangle$. Choose

$$
G_1 = W(\sigma) \cup \{e, \sigma^{-1}, \sigma^{-2}, \dots\} \quad G_2 = W(\sigma^{-1}) - \{\sigma^{-1}, \sigma^{-2}, \dots\}
$$

$$
G_3 = W(\tau) \qquad G_4 = W(\tau^{-1}) \quad \Box
$$

[A Prelude](#page-2-0) [Free Group](#page-4-0) F_2 [An Interesting Decomposition of](#page-6-0) F_2

FROM GROUPS TO SPHERES

[A Group of Rotations](#page-10-0) [Banach-Tarski Paradox, First Version](#page-13-0) [Decomposing](#page-15-0) S^2

[Problematic Poles](#page-19-0)

THE UNIT BALL B^3

 S^2 [to](#page-22-0) B^3 [Why We Need 5 Partitions](#page-24-0)

CLOSING WORDS

[Axiom of Choice and Criticism](#page-26-0)

KORK (FRAGE) KEY GRAN

ORBITS OF S^2

Define $S^2 = \{x \in \mathbb{R}^3 : ||x|| = 1\}$, the Unit Sphere in \mathbb{R}^3 .

Lemma 2, $x \sim y \iff \exists \rho \in \langle \sigma, \tau \rangle : \rho \circ x = y$. Show that ~ is an equivalence relation for $x, y \in S^2$. Proof. Exercise.

Therefore \sim partitions S^2 into equivalence classes, which are disjoint sets. We refer to equivalence classes as Orbits.

DID WE MISS SOMETHING? Dealing with Poles

Every axis of rotation intersects S^2 at two poles, unchanged under rotation. Why is this problematic?

$$
\rho_1 \circ x = \rho_2 \circ x \implies (\rho_1^{-1} \rho_2) \circ x = x
$$

$$
\implies x \text{ is a pole and } \rho_1^{-1} \rho_2 \text{ is a non-trivial identity.}
$$

KORKA SERKER ORA

Let D be the set of all poles. Then $|D| = 2 |G(\sigma, \tau)|$, and now $G\langle \sigma, \tau \rangle$ acts freely on $S^2 - D$.

THE AXIOM OF CHOICE

Let us define a set E with Orbits of $S^2 - D$,

$$
E = S^{2} - D / G\langle \sigma, \tau \rangle = \{ [x] : x \in S^{2} - D \}.
$$

Note that E is infinite. By the Axiom of Choice,

- ▶ Pick a point from each Orbit $[x] \in E$
- \blacktriangleright Let M be the set of all such points.

Therefore, by Banach-Tarski's 1^{st} Paradox,

$$
S^2 - D = G\langle \sigma, \tau \rangle \circ M
$$

= $G_1 \circ M \uplus G_2 \circ M \uplus G_3 \circ M \uplus G_4 \circ M$
= $G_1 \circ M \uplus \sigma G_2 \circ M$
= $G_3 \circ M \uplus \tau G_4 \circ M$ \square
This result is known as *The Hausdorff Paradox.*

KOD START ARE A BUILDING

[A Prelude](#page-2-0) [Free Group](#page-4-0) F_2 [An Interesting Decomposition of](#page-6-0) F_2

FROM GROUPS TO SPHERES

[A Group of Rotations](#page-10-0) [Banach-Tarski Paradox, First Version](#page-13-0) [Decomposing](#page-15-0) S^2 [Problematic Poles](#page-19-0)

THE UNIT BALL B^3

 S^2 [to](#page-22-0) B^3 [Why We Need 5 Partitions](#page-24-0)

CLOSING WORDS

[Axiom of Choice and Criticism](#page-26-0)

KOD KAR KED KED E YOUR

DEALING WITH D

Now we deal with D, the set of Poles.

Lemma 3, Let D be a countable subset of S^2 . Then

$$
S^2 = \Sigma_1 \oplus \Sigma_2 \qquad \text{such that}
$$

$$
S^2 - D = \Sigma_1 \oplus \varphi \circ \Sigma_2 \qquad \text{for some } \varphi \in G \langle \sigma, \tau \rangle.
$$

Proof.

Choose φ arbitrarily. We can find a rotation such that $\varphi^i \circ D \cap \varphi^j \circ D = \{\}\$ for $i \neq j$, and we make a clever choice of $\Sigma_1 = S^2 - \Sigma_2$ and $\Sigma_2 = D \cup \varphi \circ D \cup \varphi^2 \circ D \cup ...$

KORKA SERKER ORA

and we are done.

PARTITION OF S^2 AT LAST!

Combining The Hausdorff Paradox with Lemma 3, we get that

$$
S^2 = \Gamma_1 \uplus \cdots \uplus \Gamma_8.
$$

Further,

$$
S^2 = \coprod_{i=1}^4 R_i \circ \Gamma_i = \coprod_{i=5}^8 R_i \circ \Gamma_i.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

[A Prelude](#page-2-0) [Free Group](#page-4-0) F_2 [An Interesting Decomposition of](#page-6-0) F_2

FROM GROUPS TO SPHERES

[A Group of Rotations](#page-10-0) [Banach-Tarski Paradox, First Version](#page-13-0) [Decomposing](#page-15-0) S^2 [Problematic Poles](#page-19-0)

THE UNIT BALL $B³$

 S^2 [to](#page-22-0) B^3

[Why We Need 5 Partitions](#page-24-0)

CLOSING WORDS

[Axiom of Choice and Criticism](#page-26-0)

KOD KAR KED KED E YOUR

 S^2 to B^3 How?

> Recall $S^2 = \{ s \in \mathbb{R}^3 : ||s|| = 1 \}$ and $B^3 := \{ b \in \mathbb{R}^3 : ||s|| \le 1 \}.$ The punctured ball $B^3 - \{0\}$ can be thought of as the product of the sphere S^2 and the interval $(0, 1]$. $f: S^2 \times (0,1] \to B^3 - \{0\}$ such that

$$
f(s,r) = r \cdot s
$$
 for $x \in S^2$, $r \in (0,1]$.

[A Prelude](#page-2-0) [Free Group](#page-4-0) F_2 [An Interesting Decomposition of](#page-6-0) F_2

FROM GROUPS TO SPHERES

[A Group of Rotations](#page-10-0) [Banach-Tarski Paradox, First Version](#page-13-0) [Decomposing](#page-15-0) S^2 [Problematic Poles](#page-19-0)

THE UNIT BALL R^3

 S^2 [to](#page-22-0) B^3 [Why We Need 5 Partitions](#page-24-0)

CLOSING WORDS

[Axiom of Choice and Criticism](#page-26-0)

Corollary, (Puncture at the Origin) $B^3 - \{0\}$ is equi-decomposable with B^3 . Proof. Exercise. Hint: Use a similar argument (trick) to Lemma 3.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

[A Prelude](#page-2-0) [Free Group](#page-4-0) F_2 [An Interesting Decomposition of](#page-6-0) F_2

FROM GROUPS TO SPHERES

[A Group of Rotations](#page-10-0) [Banach-Tarski Paradox, First Version](#page-13-0) [Decomposing](#page-15-0) S^2 [Problematic Poles](#page-19-0)

THE UNIT BALL B^3

 S^2 [to](#page-22-0) B^3 [Why We Need 5 Partitions](#page-24-0)

CLOSING WORDS

[Axiom of Choice and Criticism](#page-26-0)

AXIOM OF CHOICE AND CRITICISM A DISCUSSION

- ▶ Is it really a paradox?
- \blacktriangleright Is not really AC's fault 1^{st} Version
- $\blacktriangleright \implies$ Infinity is weird.
- ▶ Subsets have no measure (Non-Lebesgue Measurable)
- ▶ Mathematics would fall without Axiom of Choice

\blacktriangleright Outlook:

- ▶ Mathematically ideal, infintely complex partitions
- ▶ Quaternions can collide at high energies and turn into more particles

KORKA SERKER ORA

 \implies AC Enjoyer

REFERENCES

- [1] Terence Tao. The Banach-Tarski Paradox.
- [2] Avery Robinson. The Banach-Tarski Paradox.
- [3] Teun van Wesel. Non-measurable Sets and the Banach-Tarski Paradox.

 $\mathcal{L}_{\text{CLOSING WORDS}}$ L AXIOM OF CHOICE AND CRITICISM

▶ Exercises,

 \blacktriangleright Slides 12, 17, 26

▶ oelshinawy@constructor.university

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

▶ Feel free to reach out :)