THE BANACH-TARSKI PARADOX AN EXPOSITION

Omar Elshinawy Undergraduate Seminar, Fall 2023

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

OVERVIEW

On the Free Group

A Prelude Free Group F_2 An Interesting Decomposition of F_2

FROM GROUPS TO SPHERES

A Group of Rotations Banach-Tarski Paradox, First Version Decomposing S^2 Problematic Poles

The Unit Ball B^3

 S^2 to B^3 Why We Need 5 Partitions

CLOSING WORDS

Axiom of Choice and Criticism

うして ふゆ く 山 マ ふ し マ うくの

ON THE FREE GROUP A Prelude

Free Group F_2 An Interesting Decomposition of F_2

FROM GROUPS TO SPHERES

A Group of Rotations Banach-Tarski Paradox, First Version Decomposing S^2 Problematic Poles

The Unit Ball B^3

 S^2 to B^3 Why We Need 5 Partitions

CLOSING WORDS

Axiom of Choice and Criticism

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

WHAT IS A FREE GROUP?

Define

S a set
S⁻¹ = {s ∈ S : s⁻¹} such that s_is_i⁻¹ := e
T = S ∪ S⁻¹
⟨S⟩ := { t₁t₂ ... t_n : t_i t_{i+1} ≠ e , t_i ∈ T, n ∈ N₀}

where $w_n \in \langle S \rangle$ is a reduced word of length n, and $t_0 \coloneqq e$. We denote the free group with $F_S \coloneqq \langle S \rangle$ of rank |S|.

On the Free Group

A Prelude **Free Group** F_2 An Interesting Decomposition of

FROM GROUPS TO SPHERES

A Group of Rotations Banach-Tarski Paradox, First Version Decomposing S^2 Problematic Poles

The Unit Ball B^3

 S^2 to B^3 Why We Need 5 Partitions

CLOSING WORDS

Axiom of Choice and Criticism

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Free F_2

Similarly,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$\tau \tau \sigma^{-1} \sigma^{-1} \cdots \in F_2$$
$$\tau \sigma^{-1} \sigma \tau^{-1} \in F_2?$$

On the Free Group

A Prelude Free Group F_2 An Interesting Decomposition of F_2

FROM GROUPS TO SPHERES

A Group of Rotations Banach-Tarski Paradox, First Version Decomposing S^2 Problematic Poles

The Unit Ball B^3

 S^2 to B^3 Why We Need 5 Partitions

CLOSING WORDS

Axiom of Choice and Criticism

うして ふゆ く 山 マ ふ し マ うくの

How does F_2 look like?

Define $W(t) \coloneqq \{w \in \langle \sigma, \tau \rangle : w_1 = t\}$ for $t \in T$. Recall, $T = \{\sigma, \tau, \tau^{-1}, \sigma^{-1}\}$

- W(σ)
 W(σ⁻¹)
- $\blacktriangleright W(\tau)$
- $\blacktriangleright \ W(\tau^{-1})$

Then, $F_2 = \{e\} \cup W(\sigma) \cup W(\sigma^{-1}) \cup W(\tau) \cup W(\tau^{-1})$

A D F A 目 F A E F A E F A Q Q

A PARADOXICAL DECOMPOSITION WEIRD, RIGHT?

Apply σ^{-1} to $W(\sigma)$, then

$$\sigma^{-1}W(\sigma) = W(\sigma) \cup W(\tau) \cup W(\tau^{-1}) \cup e = F_2 \setminus W(\sigma^{-1})$$
$$\tau^{-1}W(\tau) = W(\tau) \cup W(\sigma) \cup W(\sigma^{-1}) \cup e = F_2 \setminus W(\tau^{-1})$$
$$\implies \sigma^{-1}W(\sigma) \cup W(\sigma^{-1}) = F_2 = \tau^{-1}W(\tau) \cup W(\tau^{-1}).$$

Observe that

$$[\sigma^{-1}W(\sigma)] \cap [\tau^{-1}W(\tau)] \neq \{\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Going from F_2 to S_2

This is not geometric - yet. Can we fit F_2 into finite Euclidean space?

Goal: A Free group of rotations,

$$G\langle \sigma, \tau \rangle \in \mathbb{R}^3 : G\langle \sigma, \tau \rangle \cong F_2$$

A D F A 目 F A E F A E F A Q Q

acting on the unit Sphere S^2 in \mathbb{R}^3 .

 $\blacktriangleright \ \sigma \circ \tau \neq \tau \circ \sigma$

 \triangleright e uniquely determined by w_0

On the Free Group

A Prelude Free Group F_2 An Interesting Decomposition of F_2

FROM GROUPS TO SPHERES

A Group of Rotations

Banach-Tarski Paradox, First Version Decomposing S^2 Problematic Poles

The Unit Ball B^3

 S^2 to B^3 Why We Need 5 Partitions

CLOSING WORDS

Axiom of Choice and Criticism

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Construction of $G\langle \sigma, \tau \rangle$

For simplicity, we choose rotations around the x, y axes.

$$\sigma = R_x(\theta) \coloneqq \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{bmatrix}$$
$$\tau = R_y(\theta) \coloneqq \begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) \end{bmatrix}$$

Exercise: Show that $\sigma \circ \tau \neq \tau \circ \sigma$.

Choice of θ

Proposition, $G(\sigma, \tau) \cong F_2$ is a Free Group $\implies \theta$ is an irrational multiple of π

Proof. Assume the contrary, let $\theta = 2\pi k$ for $k \in \mathbb{Q}|_{[0,1]}$.

Then
$$k = \frac{p}{q} \implies q \ \theta = 2\pi p$$
. We know
 $\sigma^q \coloneqq [R_x(\theta)]^q$
 $= R_x(q\theta)$
 $= e$

But $|\sigma^q| = q \neq 0 \implies G\langle \sigma, \tau \rangle$ is not a Free Group.

うして ふゆ く 山 マ ふ し マ うくの

ON THE FREE GROUP

A Prelude Free Group F_2 An Interesting Decomposition of F_2

FROM GROUPS TO SPHERES

A Group of Rotations

Banach-Tarski Paradox, First Version

Decomposing S^2 Problematic Poles

The Unit Ball B^3

 S^2 to B^3 Why We Need 5 Partitions

CLOSING WORDS

Axiom of Choice and Criticism

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

BANACH-TARSKI PARADOX

FIRST VERSION

Theorem 1, There exists a countable subgroup G of SO(3), and a partition

$$G = G_1 \uplus G_2 \uplus G_3 \uplus G_4 \tag{1}$$

into disjoint sets G_1, G_2, G_3, G_4 , such that one can write

$$G = G_1 \uplus \sigma \ G_2 = G_3 \uplus \tau \ G_4 \tag{2}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

for some rotations $\sigma, \tau \in SO(3)$.

Proof. G is precisely $G\langle \sigma, \tau \rangle$. Choose

$$G_1 = W(\sigma) \cup \{e, \sigma^{-1}, \sigma^{-2}, \dots\} \quad G_2 = W(\sigma^{-1}) - \{\sigma^{-1}, \sigma^{-2}, \dots\}$$
$$G_3 = W(\tau) \qquad \qquad G_4 = W(\tau^{-1}) \quad \Box$$

ON THE FREE GROUP

A Prelude Free Group F_2 An Interesting Decomposition of F_2

FROM GROUPS TO SPHERES

A Group of Rotations Banach-Tarski Paradox, First Version

Decomposing S^2

Problematic Poles

The Unit Ball B^3

 S^2 to B^3 Why We Need 5 Partitions

CLOSING WORDS

Axiom of Choice and Criticism

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Orbits of S^2

Define $S^2 = \{x \in \mathbb{R}^3 : ||x|| = 1\}$, the Unit Sphere in \mathbb{R}^3 .

Lemma 2, $x \sim y \iff \exists \rho \in \langle \sigma, \tau \rangle : \rho \circ x = y$. Show that \sim is an equivalence relation for $x, y \in S^2$. *Proof.* Exercise.

Therefore \sim partitions S^2 into equivalence classes, which are disjoint sets. We refer to equivalence classes as Orbits.

うして ふゆ く は く は く む く し く

DID WE MISS SOMETHING? Dealing with Poles

Every axis of rotation intersects S^2 at two poles, unchanged under rotation. Why is this problematic?

$$\rho_1 \circ x = \rho_2 \circ x \implies (\rho_1^{-1}\rho_2) \circ x = x$$

 $\implies x \text{ is a pole and } \rho_1^{-1}\rho_2 \text{ is a non-trivial identity.}$

うして ふゆ く は く は く む く し く

Let D be the set of all poles. Then $|D| = 2 |G\langle \sigma, \tau \rangle|$, and now $G\langle \sigma, \tau \rangle$ acts freely on $S^2 - D$.

THE AXIOM OF CHOICE

Let us define a set E with Orbits of $S^2 - D$,

$$E = S^2 - D / G\langle \sigma, \tau \rangle = \{ [x] : x \in S^2 - D \}.$$

Note that E is infinite. By the Axiom of Choice,

- ▶ Pick a point from each Orbit $[x] \in E$
- \blacktriangleright Let *M* be the set of all such points.

Therefore, by Banach-Tarski's 1^{st} Paradox,

$$S^{2} - D = G\langle \sigma, \tau \rangle \circ M$$

= $G_{1} \circ M \uplus G_{2} \circ M \uplus G_{3} \circ M \uplus G_{4} \circ M$
= $G_{1} \circ M \uplus \sigma \ G_{2} \circ M$
= $G_{3} \circ M \uplus \tau \ G_{4} \circ M$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ うらつ

This result is known as *The Hausdorff Paradox*.

ON THE FREE GROUP

A Prelude Free Group F_2 An Interesting Decomposition of F_2

FROM GROUPS TO SPHERES

A Group of Rotations Banach-Tarski Paradox, First Version Decomposing S^2 Problematic Poles

The Unit Ball B^3

 S^2 to B^3 Why We Need 5 Partitions

CLOSING WORDS

Axiom of Choice and Criticism

Dealing with D

Now we deal with D, the set of Poles.

Lemma 3, Let D be a countable subset of S^2 . Then

$$S^{2} = \Sigma_{1} \uplus \Sigma_{2} \qquad such that$$

$$S^{2} - D = \Sigma_{1} \uplus \varphi \circ \Sigma_{2} \qquad for some \ \varphi \in G\langle \sigma, \tau \rangle.$$

Proof.

Choose φ arbitrarily. We can find a rotation such that $\varphi^i \circ D \cap \varphi^j \circ D = \{\}$ for $i \neq j$, and we make a clever choice of

$$\Sigma_1 = S^2 - \Sigma_2$$
 and $\Sigma_2 = D \cup \varphi \circ D \cup \varphi^2 \circ D \cup \dots$

うして ふゆ く は く は く む く し く

and we are done.

Partition of S^2 At last!

Combining The Hausdorff Paradox with Lemma 3, we get that

$$S^2 = \Gamma_1 \uplus \cdots \uplus \Gamma_8.$$

Further,

$$S^2 = \coprod_{i=1}^4 R_i \circ \Gamma_i = \coprod_{i=5}^8 R_i \circ \Gamma_i.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

ON THE FREE GROUP

A Prelude Free Group F_2 An Interesting Decomposition of F_2

FROM GROUPS TO SPHERES

A Group of Rotations Banach-Tarski Paradox, First Version Decomposing S^2 Problematic Poles

The Unit Ball B^3

 S^2 to B^3

Why We Need 5 Partitions

CLOSING WORDS

Axiom of Choice and Criticism

 S^2 to B^3 how?

Recall
$$S^2 = \{s \in \mathbb{R}^3 : ||s|| = 1\}$$
 and $B^3 \coloneqq \{b \in \mathbb{R}^3 : ||s|| \le 1\}$.
The punctured ball $B^3 - \{0\}$ can be thought of as the product of the sphere S^2 and the interval $(0, 1]$.
 $f: S^2 \times (0, 1] \to B^3 - \{0\}$ such that

$$f(s,r) = r \cdot s \text{ for } x \in S^2, \ r \in (0,1].$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

On the Free Group

A Prelude Free Group F_2 An Interesting Decomposition of F_2

FROM GROUPS TO SPHERES

A Group of Rotations Banach-Tarski Paradox, First Version Decomposing S^2 Problematic Poles

The Unit Ball B^3

 S^2 to B^3 Why We Need 5 Partitions

CLOSING WORDS

Axiom of Choice and Criticism

Corollary, (Puncture at the Origin)
B³ - {0} is equi-decomposable with B³.
Proof. Exercise.
Hint: Use a similar argument (trick) to Lemma 3.

On the Free Group

A Prelude Free Group F_2 An Interesting Decomposition of F_2

FROM GROUPS TO SPHERES

A Group of Rotations Banach-Tarski Paradox, First Version Decomposing S^2 Problematic Poles

The Unit Ball B^3

 S^2 to B^3 Why We Need 5 Partitions

CLOSING WORDS

Axiom of Choice and Criticism

AXIOM OF CHOICE AND CRITICISM A DISCUSSION

- ▶ Is it really a paradox?
- ▶ Is not really AC's fault 1^{st} Version
- $\blacktriangleright \implies$ Infinity is weird.
- ▶ Subsets have no measure (Non-Lebesgue Measurable)
- ▶ Mathematics would fall without Axiom of Choice

► Outlook:

- ▶ Mathematically ideal, infinitely complex partitions
- Quaternions can collide at high energies and turn into more particles
- \implies AC Enjoyer

References

- [1] Terence Tao. The Banach-Tarski Paradox.
- [2] Avery Robinson. The Banach-Tarski Paradox.
- [3] Teun van Wesel. Non-measurable Sets and the Banach-Tarski Paradox.

うして ふゆ く は く は く む く し く

−Closing words ∟Axiom of Choice and Criticism

► Exercises,

Slides 12, 17, 26

▶ oelshinawy@constructor.university

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

► Feel free to reach out :)