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Abstract

Contrary to common belief, the result by Stefan Banach and Alfred Tarski is not at all
paradoxical, and rather challenges our intuition about the notion of infinity. In this article,
we introduce a paradoxical decomposition of F2, the free group on two generators, then
extend this notion by the embedding of F2 in Euclidean space R3. We conclude with a few
notes on non-measurability, and reflect on criticism of the Axiom of Choice.
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1 On the Free Group

1.1 A Prelude

To familiarize ourselves with the concept of a free group, it may be necessary to first discuss
what a group is.

Definition 1.1 (Group Axioms). Let G be a set. Endowed with a binary operation · , if

1. (∀r, s, t ∈ G) : (r · s) · t = r · (s · t), Associativity

2. (∃ e ∈ G)(∀s ∈ G) : e · s = s · e = s, Identity Element

3. (∀s ∈ G)(∃ s−1 ∈ G) : s · s−1 = e, Inverse Element

then we say that G is a group.

Remark. We adopt the convention of writing s · t as st.
Next, to define a free group, we start with an arbitrary set S, and define S−1 to be the set of
inverses of s ∈ S as in the third axiom. This allows us to define an alphabet T := S ∪ S−1.

Definition 1.2 (Free Group). Let S be an arbitrary set. Then, the free group generated by S
is

F |S| = ⟨S⟩ := {t1t2 . . . tn : titi+1 ̸= e, ti ∈ T, n ∈ N0}

and is of rank |S|. We say that w ∈ ⟨S⟩ is a reduced word of finite length, and define t0 := e to
be the word of zero length.

In order for ⟨S⟩ to become a free group, any two words must be different unless their equality
follows from the second and third group axioms. When considering rotations in R3, we
want to make a choice of rotations σ, τ that does not allow for further reduction of words.

In the following section, we discuss the free group of two elements, explain what a reduced word
is (not), and emphasize why we need a unique representation of the identity rotation e.

1.2 The Free Group F2

Let S = {σ, τ}. Then, S−1 = {σ−1, τ−1}, and T = S ∪ S−1 = {σ, σ−1, τ, τ−1} is our alphabet.
We have that

� ττσ−1τ−1 ∈ F2 = ⟨σ, τ⟩ No two letters are inverses of each other

� τ−1σσ−1τ /∈ F2 This word should be reduced to e.

We impose this condition to uniquely represent each word. A nice exercise is to convince yourself
that there is an infinite class of non-reduced, non-trivial represntations of the identity element e.

This is analogous to choosing two rotations σ, τ (and σ−1, τ−1) that act freely on the group.
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1.3 An Interesting Decomposition of F2

Let us study the anatomy of F2.

Definition 1.3 (Classification of Reduced Words.). Let T be an alphabet. For t ∈ T, we define
W (t) := {w ∈ ⟨σ, τ⟩ : t1 = σ}

to be all reduced words that start with t ∈ T.

A free group is truly free, without any restriction beyond the group axioms. To illustrate this,
we now endow the reader with the following nice visual images.

W (σ) := σ

τ

τ . . .
σ−1 . . .

σ . . .

τ−1

σ−1 . . .

σ . . .
τ−1 . . .

σ

τ . . .
τ−1 . . .

σ . . .

W (τ) := τ

σ

τ . . .
τ−1 . . .

σ . . .

σ−1

σ−1 . . .

τ . . .
τ−1 . . .

τ

τ . . .
σ−1 . . .

σ . . .

W (τ−1) := τ−1

σ−1

σ−1 . . .

τ . . .
τ−1 . . .

σ

τ . . .
τ−1 . . .

σ . . .

τ−1

σ−1 . . .

σ . . .
τ−1 . . .

W (e) := e

W (σ−1) := σ−1

σ−1

σ−1 . . .

τ . . .
τ−1 . . .

τ

τ . . .
σ−1 . . .

σ . . .

τ−1

σ−1 . . .

σ . . .
τ−1 . . .

Observe that a word that starts with t ∈ T cannot continue with t−1 ∈ T, leaving three options
at each node. We can write that

F2 := W (σ) ⊔W (τ) ⊔W (τ−1) ⊔W (σ−1) ⊔W (e) (1)

with ⊔ as the disjoint union. We remind the reader that all words are finite, and will terminate
at some given node. Next, let us consider W (σ). Apply σ−1 from the left, then we get that

σ−1W (σ) := σ−1σ = e

τ

τ . . .
σ−1 . . .

σ . . .

τ−1

σ−1 . . .

σ . . .
τ−1 . . .

σ

τ . . .
τ−1 . . .

σ . . .

W (σ) = σ

τ . . .

τ−1 . . .

σ . . .

simplifies to W (τ−1) = τ−1

σ−1 . . .

σ . . .

τ−1 . . .

W (τ) = τ

τ . . .

σ−1 . . .

σ . . .
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Indeed, we have

σ−1W (σ) = W (σ) ⊔W (τ−1) ⊔W (τ) ⊔W (e) = F2 −W (σ). (2)

We note that the choice of σ is arbitrary, and the statement is generally true for any t ∈ T.

It is rather interesting (and perhaps paradoxical) that we ”almost” obtain the whole free group
by applying one group operation on a subset. To exploit this even further, observe that

F2 = σ−1W (σ) ⊔W (σ) = τ−1W (τ) ⊔W (τ). (3)

The goal of this demonstration is to refine the intuition behind the paradoxical decomposition.
Note, however, that our copies generate the identity e twice, and we only have one copy of
the identity. This hints towards a perhaps more complicated decomposition of F2, which we
rigorously treat with the following theorem.

Theorem 1.4 (Paradoxical Decomposition of F2). For the free group F2 = ⟨σ, τ⟩ on two gener-
ators, we can find a partition

⟨σ, τ⟩ = G1 ⊔G2 ⊔G3 ⊔G4

such that one can write
⟨σ, τ⟩ = G1 ⊔ σG2 = G3 ⊔ τG4.

Proof. We make the following clever choices,

G1 = W (σ); G2 = W (σ−1); G3 = W (τ) ⊔ {e, τ−1, τ−2, . . . }; G4 = W (τ−1)− {τ−1, τ−2, . . . }.

− G4 ⊂ W (τ−1), meaning G1, G2, G4 are disjoint. It suffices to compare these sets to G3.

− G3 has no words starting with σ or σ−1, therefore G1, G2 are disjoint compared with G3.

− W (τ), W (τ−1) are disjoint, and G3, G4 do not intersect on {τ−1, τ−2, . . . }, nor on e.

The first statement immediately follows. For the following statement, we observe that

G1 ⊔ σG2 = W (σ) ⊔ σW (σ−1) =(3) F2.

Next, we check that G3 ⊔ τG4 indeed generates F2.

G3 ⊔ τG4 =

(
W (τ) ⊔ {e, τ−1, τ−2, . . . }

)
⊔ τ

(
W (τ−1)− {τ−1, τ−2, . . . }

)
=(3)

(
W (τ) ⊔ {e, τ−1, τ−2, . . . }

)
⊔
((

F2 −W (τ)
)
− {e, τ−1, τ−2, . . . }

)
=

(
W (τ) ⊔ {e, τ−1, τ−2, . . . }

)
⊔
(
F2 −

(
W (τ) ⊔ {e, τ−1, τ−2, . . . }

))
= F2.

As promised in (3), we obtain exactly one copy of e. □

We have used one copy of ⟨σ, τ⟩ to generate two copies of ⟨σ, τ⟩, by the means of rotations σ, τ .
To extend this notion to S2, we would like to argue the existence of these two rotations that
behave similarly to the generators of F2. This is precisely what we dedicate the next section to.
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2 From Groups to Spheres

We show that there exists σ, τ such that ⟨σ, τ⟩ is free. It turns out there is an infinite class of such
pairs of rotations, but we do not delve into that at all. We will however give explicit rotation
matrices for our purposes. We then proceed immediately with paradoxically decomposing S2.

2.1 A Free Group of Rotations

Let us start by choosing θ = arccos 1
3 . Next, we set σ be a rotation by θ about the x−axis, and

τ a rotation by θ about the z−axis. We give explicit matrices,

σ =
1

3

3 0 0

0 1 −2
√
2

0 2
√
2 1

 & σ−1 =
1

3

3 0 0

0 1 2
√
2

0 −2
√
2 1


τ =

1

3

 1 −2
√
2 0

2
√
2 1 0

√
2

0 0 3

 & τ−1 =
1

3

 1 2
√
2 0

−2
√
2 1 0

√
2

0 0 3


Some motivation behind this choice is the fact that arccos 1

3 is an irrational rotation. A rational
rotation is periodic, and that is of course not suitable for our purposes. Now we show why
arccos 1

3 is indeed a more suitable choice.

Lemma 2.1. For ρ ∈ ⟨σ, τ⟩ we find that

ρ(0, 1, 0) =
1

3

n

(a
√
2, b, c

√
2)

for a, b, c ∈ Z

Proof. Induction on the length n of ρ. Base case is trivial, suppose the lemma holds for all k < n.
Then ρn = rρn−1 for r ∈ {σ, τ, σ−1, τ−1}. Applying the hypothesis for ρn−1 yields

(σ ◦ ρ′)(0, 1, 0) = 1

3

n(
3a

√
2, b− 4c, (c+ 2b)

√
2
)

(σ−1 ◦ ρ′)(0, 1, 0) = 1

3

n(
3a

√
2, b+ 4c, (c− 2b)

√
2
)

(τ ◦ ρ′)(0, 1, 0) = 1

3

n(
(a− 2b)

√
2, b+ 4a, 3c

√
2
)

(τ−1 ◦ ρ′)(0, 1, 0) = 1

3

n(
(a+ 2b)

√
2, b− 4a, 3c

√
2
)

This concludes the argument. □

Theorem 2.2. ⟨σ, τ⟩ is a free group such that there is no non-trivial identity.

Proof. Suppose there exists a non-trivial identity rotation ρ. Then ρ(0, 1, 0) = (0, 1, 0). By 2.1
we have that

(0, 1, 0) = ρ(0, 1, 0) =
1

3

n

(a
√
2, b, c

√
2)

so we infer that a = c = 0 and b = 3n for n ∈ N, meaning a ≡3 b ≡3 c. This yields a contradiction,
which for the sake of brevity, is shown in Proposition 3.1, Tom Weston’s expository. [4]. □
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2.2 Decomposing S2

There is a small subtlety with rotations, that is every axis of rotation fixes two points. If we
want to have a true free action, then we ought to eliminate these two points for every rotation.
For now, let us denote the set of all such points by P, and proceed our discussion on S2/P.

Definition 2.3 (Problematic Poles). We define

P := {x ∈ S2 | r(x) = x for r ∈ ⟨σ, τ⟩}

to be points x ∈ S2 that are fixed by rotations r ∈ ⟨σ, τ⟩.

Remark. Clearly |P | := 2|F2| as for each rotation we have two fixed points.

For the sake of our construction, we partition the sphere into equivalence classes.

Lemma 2.4 (Partition of S2). The the following relation,

x ∼ y ⇐⇒ ∃ρ ∈ ⟨σ, τ⟩ : ρ(x) = y.

defines an equivalence relation on x, y ∈ S2.

Proof. One only checks that ∼ is symmetric, transitive and reflexive, a simple exercise. □

Using the lemma above, we define(
S2 − P

)
/ ∼ := {[x] | x ∈ S2 − P}

to be the set of equivalence classes of points in S2 −P under ∼, which we use in the next proof.

Theorem 2.5 (Hausdorff Paradox). There exists a countable subset P of the sphere S2, and a
decompostion

S2 − P = Ω1 ⊔ Ω2 ⊔ Ω3 ⊔ Ω4

such that
S2 − P = Ω1 ⊔ σ

(
Ω2

)
= Ω3 ⊔ τ

(
Ω4)

Proof. We summon the axiom of choice to pick a representative from each equivalence class of
points [x] ∈

(
S2 − P

)
/ ∼ . Define that set to be

X = {x | x is a representative of [x]}.

Since X contains a point from each equivalence class, we can re-apply all rotations to x ∈ X to
generate all the elements back. If we do this for all x, we generate S2−P once again if we note
that ⟨σ, τ⟩ acts freely on S2 − P.

⟨σ, τ⟩(X) :=
⊔
x∈X

⟨σ, τ⟩(x) = S2 − P

The claim follows from the paradoxical decomposition 1.4 of ⟨σ, τ⟩ with Ωi = Gi. □

6



Omar Elshinawy The Banach-Tarski Paradox

Let us now deal with the problematic poles P .

Lemma 2.6. There exists a rotation φ such that for all n ≥ 1 we have that φn(P ) ∩ P = ϕ.
Hence, φn(D) ∩ φm(D) = ϕ for distinct m,n.

Proof. We use the remark from 2.3. Choose an axis of rotation l that does not intersect P.
Thus, no rotation of l will fix a point in P. Next, choose a random pair (p, q) ∈ P × P of which
there are countably many, and consider rotations around l which take p to q. It turns out we
can find countably many, since p, q must be on the same plane orthogonal to l. If there are only
countably many rotations φ around l such that φn(D) ∩D ̸= ϕ, then we can choose φ around l
such that φn(p) ̸= q for all (p, q) ∈ D ×D. The second statement immediately follows. □

Proposition 2.7. Let D be a countable subset of S2. Then

S2 = Σ1 ⊔ Σ2

such that
S2 − P = Σ1 ⊔ φ

(
Σ2

)
for some φ ∈ ⟨σ, τ⟩.

Proof. By 2.6 we can choose φ such that

Σ2 := P ⊔ φ(P ) ⊔ φ2(P ) ⊔ . . . ; Σ1 := S2 − Σ2

thus concluding the proof. □

Remark. Applying φ to Σ2 precisely yields Σ2 − P. Infinity is cool. □

Using the machinery developed in the Hausdorff paradox 2.5 and 3.3, we conclude that

Corollary 2.8. There exists a partition

S2 = Γ1 ⊔ · · · ⊔ Γ8

and rotations ρ1, . . . , ρ8 such that

S2 =

4⊔
i=1

ρi(Γi) =

8⊔
i=5

ρi(Γi)

Proof. Simple algebra. Note that we can write

1. S2 = (S2 − Σ2) ⊔ Σ2

2. P ⊂ Σ2 =⇒ S2 − Σ2 = (S2 − P ) ∩ (S2 − Σ2)

3. φ(Σ2) = Σ2 − P =⇒ Σ2 = φ−1(Σ2 − P ) = φ−1
(
(S2 − P ) ∩ Σ2

)
De Morgan’s Law

Next, for X the set of representatives [x], define

Xσ = W (σ)(X) Xσ−1 = W (σ−1)(X) Xτ = W (τ)(X) Xτ−1 = W (τ−1)(τ)

Then,

4.1 τ−1(Xτ ) ⊔Xτ−1 = S2 − P

4.2 σ−1(Xσ) ⊔Xσ−1 = S2 − P

by the paradoxical decomposition. We additionally use the following identities,

7
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5.
(
τ−1(Xτ ) ⊔Xτ−1

)
∩ (S2 − Σ2) =

(
τ−1(Xτ ) ∩ (S2 − Σ2)

)
⊔
(
Xτ−1 ∩ (S2 − Σ2)

)
6. τ−1(Xτ ) ∩ (S2 − Σ2) = τ−1

(
Xτ ∩ τ(S2 − Σ2)

)
7. φ−1

(
τ−1(Xτ ) ⊔Xτ−1) ∩ Σ2

)
= φ−1

((
τ−1(Xτ ) ∩ Σ2

)
⊔
(
Xτ−1 ∩ Σ2

))
=

8. = φ−1 ◦ τ−1
(
Xτ ∩ τ(Σ2)

)
⊔ φ−1

(
Xτ−1 ∩ Σ2

)
and make the following choices.

Γ1 = (Xτ ) ∩ (S2 − Σ2) Γ2 = Xτ−1 ∩ (S2 − Σ2) Γ3 = Xτ ∩ τ(Σ2) Γ4 = Xτ−1 ∩ Σ2

This yields

S2 =1 (S2 − Σ2) ⊔ Σ2

=2
(
(S2 − P ) ∩ (S2 − Σ2)

)
⊔ Σ2

=3
(
(S2 − P ) ∩ (S2 − Σ2)

)
⊔ φ−1

(
(S2 − P ) ∩ Σ2

)
.

=4.1
((

τ−1(Xτ ) ⊔Xτ−1

)
∩ (S2 − Σ2)

)
⊔ φ−1

(
(τ−1(Xτ ) ⊔Xτ−1) ∩ Σ2

)
=5

((
τ−1(Xτ ) ∩ (S2 − Σ2)

)
⊔
(
Xτ−1 ∩ (S2 − Σ2)

))
⊔ φ−1

(
(τ−1(Xτ ) ⊔Xτ−1) ∩ Σ2

)
=6,7

(
τ−1

(
Xτ ∩ τ(S2 − Σ2)

)
⊔ Γ2

)
⊔ φ−1

((
τ−1(Xτ ) ∩ Σ2

)
⊔
(
Xτ−1 ∩ Σ2

))
=8

(
τ−1(Γ1) ⊔ Γ2

)
⊔
(
φ−1 ◦ τ−1

(
Xτ ∩ τ(Σ2)

)
⊔ φ−1

(
Xτ−1 ∩ Σ2

))
= τ−1(Γ1) ⊔ Γ2 ⊔ φ−1 ◦ τ−1(Γ3) ⊔ φ−1(Γ4). (1)

Note that we could have proceeded similarly with 4.2 (σ) instead of 4.1 (τ),

Γ5 = (Xσ) ∩ (S2 − Σ2) Γ6 = Xσ−1 ∩ (S2 − Σ2) Γ7 = Xτ ∩ σ(Σ2) Γ8 = Xσ−1 ∩ Σ2

with
σ−1(Γ5) ⊔ Γ6 ⊔ φ−1 ◦ σ−1(Γ7) ⊔ φ−1(Γ8). (2)

The proof concludes with (1), (2), and the simple observation that all Γi are disjoint. □

By this construction, we (almost) have the Banach-Tarski paradox. We address this statement
in more detail in the following section.
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3 The Unit Ball B3

3.1 S2 to B3

Indeed, we have constructed a paradoxical decomposition of S2. Note, however, that our goal is
to transfer it to the whole unit ball B3. This itself proves to be a simple task.

Definition 3.1 (The Unit Ball). Define

B3 := {x ∈ R3 | ||x|| ≤ 1}

to be the unit ball in R3, with || · || the Euclidean norm.

The punctured ball B3−{0} is thought of as the product of the sphere S2 and the interval (0, 1].

Lemma 3.2. There exists a paradoxical decomposition of B3 − {0}.

Proof. This builds upon the work demonstrated in 2.8. Similar to Γi, define

Γ′
i = {x ∈ B3 − {0} | ∃p ∈ Γi , r ∈ (0, 1] x = rp}

and therefore

B3 − {0} =

4⊔
i=1

ρi(Γ
′
i) =

8⊔
i=5

ρi(Γ
′
i).

This concludes the argument. □

Remark. A good visual image is to think of the extension of points on the boundary to the origin.
This is the ”fiber” of the ball B3, and if the surface is decomposed paradoxically then we can
clearly extend that to B3 (without the origin).

3.2 Why We Need 8 Partitions

A is simply amendable detail is that we are still missing the origin point.

Proposition 3.3. There exists a decomposition of B3 such that

B3 = B1 ⊔B2

such that
B3 − {0} = B1 ⊔ θ(B2)

for some θ ∈ ⟨σ, τ⟩.

Proof. We shall use a simple trick as in 3.3 to shift the origin and its orbits. Convince yourself
that we can find a rotation θ such that θn(0) ∈ B3 for all n ≥ 0. Then, choose

B2 = 0 ⊔ θ(0) ⊔ θ2(0) ⊔ . . . ; B1 = B3 −B2

then the claim holds. □

9
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Up next, the main result of this paper.

Theorem 3.4 (The Banach-Tarski Paradox). There exists a decomposition of B3 such that

B3 =

16⊔
i=1

ρi(Λi)

such that

B3 =

8⊔
i=1

ρi(Λi) =

16⊔
i=9

ρi(Λi)

for ρi ∈ ⟨σ, τ⟩.

Proof. First, B2 = θ−1
(
(B3 − {0}) ∩B2

)
. We then write

B3 = (B3 −B2) ⊔B2 =
(
(B3 − {0}) ∩B1

)
⊔ θ−1

(
(B3 − {0}) ∩B2

)
.

We then use B3 − {0} = τ−1(Γ′
1) ⊔ Γ′

2 ⊔ φ−1 ◦ τ−1(Γ′
3) ⊔ φ−1(Γ′

4) to get that

B3 =
([

τ−1(Γ′
1) ⊔ Γ′

2 ⊔ φ−1 ◦ τ−1(Γ′
3) ⊔ φ−1(Γ′

4)
]
∩B1

)
⊔ θ−1

([
τ−1(Γ′

1) ⊔ Γ′
2 ⊔ φ−1 ◦ τ−1(Γ′

3) ⊔ φ−1(Γ′
4)
]
∩B2

)
=
(
τ−1

[
Γ′
1 ∩ τ(B1)

]
⊔
[
Γ′
2 ∩B1

]
⊔ φ−1 ◦ τ−1

[
Γ′
3 ∩ φ ◦ τ(B1)

]
⊔ φ−1

[
Γ′
4 ∩ φ(B1)

])
⊔ θ−1

(
τ−1

[
Γ′
1 ∩ τ(B2)

]
⊔
[
Γ′
2 ∩B2

]
⊔ φ−1 ◦ τ−1

[
Γ′
3 ∩ φ ◦ τ(B2)

]
⊔ φ−1

[
Γ′
4 ∩ φ(B2)

])
And now finally we can see the decomposition. We can define

Λ1 = Γ′
1 ∩ τ(B1) Λ2 = Γ′

2 ∩B1 Λ3 = Γ′
3 ∩ φ ◦ τ(B1) Λ4 = Γ′

4 ∩ φ(B1)

Λ5 = Γ′
1 ∩ τ(B2) Λ6 = Γ′

2 ∩B2 Λ7 = Γ′
3 ∩ φ ◦ τ(B2) Λ8 = Γ′

4 ∩ φ(B2)

to be the first copy of B3. By the exact same argument for τ we can proceed for σ with

Λ9 = Γ′
5 ∩ σ(B1) Λ10 = Γ′

6 ∩B1 Λ11 = Γ′
7 ∩ φ ◦ σ(B1) Λ12 = Γ′

8 ∩ φ(B1)

Λ13 = Γ′
5 ∩ σ(B2) Λ14 = Γ′

6 ∩B2 Λ15 = Γ′
7 ∩ φ ◦ σ(B2) Λ16 = Γ′

8 ∩ φ(B2)

and one can verify that all claims of the theorem hold! □

10
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4 Closing Words

4.1 Note on Non-measurability

The Banach-Tarski theorem is a classical example of a non-measurable set. In 2.4, we partitioned
the sphere into equivalence classes of points in the same orbit. Using the Axiom of Choice, we
constructed (The Hausdorff Paradox, 2.5)

X = {x | x is a representative of [x]}.

that is a non-measurable set. Recall our earlier discussion:

Since X contains a point from each equivalence class, we can re-apply all rotations to x ∈ X
to generate all the elements back. If we do this for all x, we generate S2 − P once again.

⟨σ, τ⟩(X) :=
⊔
x∈X

⟨σ, τ⟩(x) = S2 − P

To see this, we attempt to assign a measure to e.g. S2 − P. We write

S2 − P =
⊔
x∈X

⟨σ, τ⟩(x) :=
⊔

r∈⟨σ,τ⟩

r(X) =⇒ µ(S2 − P ) = µ
( ⊔
r∈⟨σ,τ⟩

r(X)
)

A measure µ should be rotation invariant, i.e. rotating a piece should not change its size. Further,
the measure of two pieces (disjoint sets) should be their sum. Therefore, we get that

µ(S2 − P ) = µ
( ⊔
r∈⟨σ,τ⟩

r(X)
)
= µ

( ⊔
r∈⟨σ,τ⟩

X
)
=

∑
r∈⟨σ,τ⟩

µ(X).

We cannot assign a measure to X. Recall that card(⟨σ, τ⟩) = ℵ0. We have two options.

µ(X)

{
= 0 =⇒ S2 = 0

> 0 =⇒ S2 =
∑

r∈⟨σ,τ⟩ µ(X) = ∞

The second sequence diverges, as we must add µ(X) for every rotation r ∈ ⟨σ, τ⟩; of which there
are infinitely many. We see that both options are not at all viable.

Therefore the Banach-Tarski theorem must divide B3 into non-measurable sets. Otherwise, any
attempt to assign a measure to µ(X) immediately implies that the volume of two balls is the
same as the volume of one.

4.2 Axiom of Choice and Criticism

This result has received a lot of criticism in the mathematical world. For instance, Émile Borel
considered the Banach−Tarski a reductio ad abdsurdum of the Axiom of Choice by the construc-
tion we just saw. The reality is, however, that the statement is true and not paradoxical at all.

Briefly, what Banach and Tarski are trying to tell us is that if, and we emphasize the if, you can
divide a ball in such an infinite pathological construction, then indeed the theorem holds. The
theorem is logically consistent, as the necessary condition shall never be satisfied for our physical
space, which is far from having a structure similar to R3.

This features a significant property of the continuum, that is: dividing a spatial region into
disjoint pieces need not preserve volume. We need to rather accustom ourselves to the notion of

infinity, and refine our intuition to the natural consequences of it. This concludes the paper. ξ
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